The complexity of election problems with group-separable preferences

We analyze the complexity of several NP-hard election-related problems under the assumptions that the voters have group-separable preferences. We show that under this assumption our problems typically remain NP-hard, but we provide more efficient algorithms if additionally the clone decomposition tree is of moderate height.

[1]  Ariel D. Procaccia,et al.  On the complexity of achieving proportional representation , 2008, Soc. Choice Welf..

[2]  Jörg Rothe,et al.  Exact Complexity of the Winner Problem for Young Elections , 2001, Theory of Computing Systems.

[3]  Gerhard J. Woeginger,et al.  Are there any nicely structured preference profiles nearby? , 2013, Math. Soc. Sci..

[4]  Vincent Conitzer Eliciting single-peaked preferences using comparison queries , 2007, AAMAS '07.

[5]  P. Strevens Iii , 1985 .

[6]  Friedrich Eisenbrand,et al.  Proximity Results and Faster Algorithms for Integer Programming Using the Steinitz Lemma , 2017, SODA.

[7]  G. Thompson,et al.  The Theory of Committees and Elections. , 1959 .

[8]  Piotr Faliszewski,et al.  Achieving fully proportional representation: Approximability results , 2013, Artif. Intell..

[9]  Nadja Betzler,et al.  On the Computation of Fully Proportional Representation , 2011, J. Artif. Intell. Res..

[10]  Craig Boutilier,et al.  Social Choice : From Consensus to Personalized Decision Making , 2011 .

[11]  Martin Lackner,et al.  Preferences Single-Peaked on a Circle , 2017, AAAI.

[12]  Edith Hemaspaandra,et al.  Bypassing Combinatorial Protections: Polynomial-Time Algorithms for Single-Peaked Electorates , 2010, AAAI.

[13]  Svetlana Obraztsova,et al.  On the Complexity of Voting Manipulation under Randomized Tie-Breaking , 2011, IJCAI.

[14]  John R. Chamberlin,et al.  Representative Deliberations and Representative Decisions: Proportional Representation and the Borda Rule , 1983, American Political Science Review.

[15]  H. Young Extending Condorcet's rule , 1977 .

[16]  Svetlana Obraztsova,et al.  Ties Matter: Complexity of Voting Manipulation Revisited , 2011, IJCAI.

[17]  Piotr Faliszewski,et al.  How Hard is Control in Single-Crossing Elections? , 2014, ECAI.

[18]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[19]  Ken-ichi Inada,et al.  A Note on the Simple Majority Decision Rule , 1964 .

[20]  Piotr Faliszewski,et al.  The complexity of fully proportional representation for single-crossing electorates , 2013, Theor. Comput. Sci..

[21]  Piotr Faliszewski,et al.  Clone structures in voters' preferences , 2011, EC '12.

[22]  Ken-ichi Inada THE SIMPLE MAJORITY DECISION RULE , 1969 .

[23]  Edith Elkind,et al.  Preferences Single-Peaked on Nice Trees , 2016, AAAI.

[24]  Edith Elkind,et al.  Preference Restrictions in Computational Social Choice: Recent Progress , 2016, IJCAI.

[25]  Toby Walsh,et al.  How Hard Is It to Control an Election by Breaking Ties? , 2013, ECAI.

[26]  Kevin Roberts,et al.  Voting over income tax schedules , 1977 .

[27]  Jörg Rothe,et al.  Anyone but him: The complexity of precluding an alternative , 2005, Artif. Intell..

[28]  Martin Koutecký,et al.  Integer Programming in Parameterized Complexity: Three Miniatures , 2018, IPEC.

[29]  Piotr Faliszewski,et al.  The shield that never was: societies with single-peaked preferences are more open to manipulation and control , 2009, TARK '09.