Deep Learning for Hurricane Track Forecasting from Aligned Spatio-temporal Climate Datasets
暂无分享,去创建一个
Balázs Kégl | Guillaume Charpiat | Claire Monteleoni | Mo Yang | Sophie Giffard-Roisin | B. Kégl | C. Monteleoni | G. Charpiat | Mo Yang | S. Giffard‐Roisin
[1] Vladlen Koltun,et al. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling , 2018, ArXiv.
[2] John A. Knaff,et al. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS) , 2005 .
[3] C. J. Neumann,et al. The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone data. , 2010 .
[4] Karthik Kashinath,et al. Segmenting and Tracking Extreme Climate Events using Neural Networks , 2017 .
[5] J. Thepaut,et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .
[6] Patrick Gallinari,et al. Deep learning for physical processes: incorporating prior scientific knowledge , 2017, ICLR.
[7] Abdollah Homaifar,et al. A Sparse Recurrent Neural Network for Trajectory Prediction of Atlantic Hurricanes , 2016, GECCO.
[8] Balázs Kégl,et al. Fused Deep Learning for Hurricane Track Forecast from Reanalysis Data , 2018 .
[9] Andrew Zisserman,et al. Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.
[10] Alex Krizhevsky,et al. One weird trick for parallelizing convolutional neural networks , 2014, ArXiv.