A Variational Approach to Multirate Integration for Constrained Systems

The simulation of systems with dynamics on strongly varying time scales is quite challenging and demanding with regard to possible numerical methods. A rather naive approach is to use the smallest necessary time step to guarantee a stable integration of the fast frequencies. However, this typically leads to unacceptable computational loads. Alternatively, multirate methods integrate the slow part of the system with a relatively large step size while the fast part is integrated with a small time step. In this work, a multirate integrator for constrained dynamical systems is derived in closed form via a discrete variational principle on a time grid consisting of macro and micro time nodes. Being based on a discrete version of Hamilton’s principle, the resulting variational multirate integrator is a symplectic and momentum preserving integration scheme and also exhibits good energy behaviour. Depending on the discrete approximations for the Lagrangian function, one obtains different integrators, e.g. purely implicit or purely explicit schemes, or methods that treat the fast and slow parts in different ways. The performance of the multirate integrator is demonstrated by means of several examples.

[1]  Gaurav S. Sukhatme,et al.  Geometric discretization of nonholonomic systems with symmetries , 2009 .

[2]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[3]  Martin Arnold,et al.  Multi-Rate Time Integration for Large Scale Multibody System Models , 2007 .

[4]  S. Reich Momentum conserving symplectic integrators , 1994 .

[5]  Benedict Leimkuhler,et al.  A symplectic integrator for riemannian manifolds , 1996 .

[6]  H. Owhadi,et al.  Stochastic Variational Integrators , 2007, 0708.2187.

[7]  Peter Betsch,et al.  The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics , 2008 .

[8]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[9]  J. Marsden,et al.  Discrete mechanics and optimal control for constrained systems , 2010 .

[10]  J. Marsden,et al.  Variational integrators for constrained dynamical systems , 2008 .

[11]  Eitan Grinspun,et al.  Implicit-Explicit Variational Integration of Highly Oscillatory Problems , 2008, Multiscale Model. Simul..

[12]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[13]  Jerrold E. Marsden,et al.  Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..

[14]  Eric Darve,et al.  Stability of Asynchronous Variational Integrators , 2007, 21st International Workshop on Principles of Advanced and Distributed Simulation (PADS'07).

[15]  J. Marsden,et al.  Variational time integrators , 2004 .

[16]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[17]  A. Mielke Analysis, modeling and simulation of multiscale problems , 2006 .

[18]  Peter Betsch,et al.  The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics , 2006 .

[19]  Andreas Bartel,et al.  A multirate ROW-scheme for index-1 network equations , 2009 .

[20]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[21]  J. Marsden,et al.  DISCRETE MECHANICS AND OPTIMAL CONTROL: AN ANALYSIS ∗ , 2008, 0810.1386.

[22]  R.M.M. Mattheij,et al.  BDF Compound-Fast multirate transient analysis with adaptive stepsize control , 2007 .

[23]  O. Chau,et al.  A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity , 2007 .

[24]  Jerrold E. Marsden,et al.  An Overview of Variational Integrators , 2004 .

[25]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[26]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[27]  B. Leimkuhler,et al.  Symplectic integration of constrained Hamiltonian systems , 1994 .

[28]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[29]  Jerrold E. Marsden,et al.  Nonsmooth Lagrangian Mechanics and Variational Collision Integrators , 2003, SIAM J. Appl. Dyn. Syst..

[30]  T. Schlick,et al.  Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics , 1998 .

[31]  P. Rentrop,et al.  Multirate Partitioned Runge-Kutta Methods , 2001 .

[32]  R. Abraham,et al.  Manifolds, tensor analysis, and applications: 2nd edition , 1988 .

[33]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[34]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[35]  David Cohen,et al.  Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review , 2006 .