Graphene quilts for thermal management of high-power GaN transistors.

Self-heating is a severe problem for high-power gallium nitride (GaN) electronic and optoelectronic devices. Various thermal management solutions, for example, flip-chip bonding or composite substrates, have been attempted. However, temperature rise due to dissipated heat still limits applications of the nitride-based technology. Here we show that thermal management of GaN transistors can be substantially improved via introduction of alternative heat-escaping channels implemented with few-layer graphene-an excellent heat conductor. The graphene-graphite quilts were formed on top of AlGaN/GaN transistors on SiC substrates. Using micro-Raman spectroscopy for in situ monitoring we demonstrated that temperature of the hotspots can be lowered by ∼20 °C in transistors operating at ∼13 W mm(-1), which corresponds to an order-of-magnitude increase in the device lifetime. The simulations indicate that graphene quilts perform even better in GaN devices on sapphire substrates. The proposed local heat spreading with materials that preserve their thermal properties at nanometre scale represents a transformative change in thermal management.

[1]  Valentin O. Turin,et al.  Performance degradation of GaN field-effect transistors due to thermal boundary resistance at GaN/substrate interface , 2004 .

[2]  A. Obraztsov,et al.  Chemical vapour deposition: Making graphene on a large scale. , 2009, Nature nanotechnology.

[3]  S. Kidalov,et al.  Thermal Conductivity of Diamond Composites , 2009, Materials.

[4]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[5]  G. Simin,et al.  Thermal management of AlGaN-GaN HFETs on sapphire using flip-chip bonding with epoxy underfill , 2003, IEEE Electron Device Letters.

[6]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[7]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[8]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[9]  E. Pop,et al.  Heat conduction across monolayer and few-layer graphenes. , 2010, Nano letters.

[10]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[11]  Ping Hui,et al.  Thermal conductivities of evaporated gold films on silicon and glass , 1999 .

[12]  Gang Chen,et al.  Thermal conductance and phonon transmissivity of metal–graphite interfaces , 2010 .

[13]  A. Balandin,et al.  Thermal Properties of the Hybrid Graphene-Metal Nano-Micro-Composites: Applications in Thermal Interface Materials , 2012, 1202.0330.

[14]  C. N. Lau,et al.  Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. , 2010, Nano letters.

[15]  F. H. Long,et al.  FIRST- AND SECOND-ORDER RAMAN SCATTERING FROM SEMI-INSULATING 4H-SIC , 1999 .

[16]  Guanxiong Liu,et al.  Growth of large-area graphene films from metal-carbon melts , 2010, 1011.4081.

[17]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[18]  Alexander A. Balandin,et al.  Thermal conduction in AlxGa1−xN alloys and thin films , 2005 .

[19]  R. Trew,et al.  AlGaN/GaN HFET reliability , 2009, IEEE Microwave Magazine.

[20]  K. L. Chopra,et al.  Thermal conductivity of copper films , 1974 .

[21]  M. Segal Selling graphene by the ton. , 2009, Nature nanotechnology.

[22]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[23]  Sergey Bychikhin,et al.  Self-heating phenomena in high-power III-N transistors and new thermal characterization methods developed within EU project TARGET , 2009, International Journal of Microwave and Wireless Technologies.

[24]  R. Stark,et al.  Temperature-depending Raman line-shift of silicon carbide , 2009 .

[25]  Hangfeng Ji,et al.  Integrated micro-Raman/infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures , 2006, IEEE Transactions on Electron Devices.

[26]  M. A. Mastro,et al.  Reduced Self-Heating in AlGaN/GaN HEMTs Using Nanocrystalline Diamond Heat-Spreading Films , 2010, IEEE Electron Device Letters.

[27]  Alexander A. Balandin,et al.  The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs , 2003 .

[28]  Hangfeng Ji,et al.  Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices , 2007, IEEE Transactions on Electron Devices.

[29]  D. Teweldebrhan,et al.  Direct Low‐Temperature Integration of Nanocrystalline Diamond with GaN Substrates for Improved Thermal Management of High‐Power Electronics , 2012 .

[30]  Alexander A. Balandin,et al.  Electrothermal simulation of the self-heating effects in GaN-based field-effect transistors , 2006 .

[31]  Martin Kuball,et al.  Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy , 2003 .

[32]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[33]  Junyong Kang,et al.  Thermal conductivity of isotopically modified graphene. , 2011, Nature Materials.

[34]  Steven Prawer,et al.  Temperature dependence of Raman scattering in single crystal GaN films , 1999 .

[35]  Samuel Graham,et al.  GaN HEMT thermal behavior and implications for reliability testing and analysis , 2008 .

[36]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[37]  P. Waltereit,et al.  Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE , 2004, IEEE Electron Device Letters.

[38]  K. Doverspike,et al.  High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates , 1999, IEEE Electron Device Letters.

[39]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[40]  M. Kuball,et al.  Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy , 2002, IEEE Electron Device Letters.

[41]  Luigi Colombo,et al.  Evolution of graphene growth on Ni and Cu by carbon isotope labeling. , 2009, Nano letters.

[42]  K. Mak,et al.  Measurement of the thermal conductance of the graphene/SiO2 interface , 2010 .

[43]  Michael Reichling,et al.  Thermal conductivity of thin metallic films measured by photothermal profile analysis , 1997 .

[44]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[45]  Alexander A. Balandin,et al.  Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications , 1999 .