Terminal coalgebras and free iterative theories

Every finitary endofunctor H of Set can be represented via a finitary signature Σ and a collection of equations called "basic". We describe a terminal coalgebra for H as the terminal Σ-coalgebra (of all Σ-trees) modulo the congruence of applying the basic equations potentially infinitely often. As an application we describe a tree iterative theory on H (in the sense of Calvin Elgot) as the theory of all rational Σ-trees modulo the analogous congruence. This yields a number of new examples of iterative theories, e.g., the theory of all strongly extensional, rational, finitely branching trees, free on the finite power-set functor, or the theory of all binary, rational unordered trees, free on one commutative binary operation.

[1]  H. Peter Gumm,et al.  Coalgebras Of Bounded Type , 2002, Math. Struct. Comput. Sci..

[2]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[3]  C. C. Elgot Monadic Computation And Iterative Algebraic Theories , 1982 .

[4]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[5]  Susanna Ginali,et al.  Regular Trees and the Free Iterative Theory , 1979, J. Comput. Syst. Sci..

[6]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[7]  Stefan Milius,et al.  From Iterative Algebras to Iterative Theories (Extended Abstract) , 2004, CMCS.

[8]  Jirí Adámek,et al.  On Rational Monads and Free Iterative Theories , 2002, CTCS.

[9]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[10]  Stefan Milius Completely iterative algebras and completely iterative monads , 2005, Inf. Comput..

[11]  Jiří Adámek,et al.  Free algebras and automata realizations in the language of categories , 1974 .

[12]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[13]  Jirí Adámek,et al.  Iterative algebras at work , 2006, Mathematical Structures in Computer Science.

[14]  Stephen L. Bloom,et al.  The Existence and Construction of Free Iterative Theories , 1976, J. Comput. Syst. Sci..

[15]  Jirí Adámek,et al.  On final coalgebras of continuous functors , 2003, Theor. Comput. Sci..

[16]  James Worrell,et al.  On the final sequence of a finitary set functor , 2005, Theor. Comput. Sci..

[17]  C. C. Elgot,et al.  On the algebraic structure of rooted trees , 1978 .

[18]  Peter Aczel,et al.  Infinite trees and completely iterative theories: a coalgebraic view , 2003, Theor. Comput. Sci..

[19]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[20]  Jirí Adámek On a Description of Terminal Coalgebras and Iterative Theories , 2003, CMCS.

[21]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[22]  Jirí Adámek,et al.  Free iterative theories: a coalgebraic view , 2003, Mathematical Structures in Computer Science.

[23]  Jirí Adámek Final Coalgebras are Ideal Completions of Initial Algebras , 2002, J. Log. Comput..

[24]  Michael Barr,et al.  Additions and Corrections to "Terminal Coalgebras in Well-founded Set Theory" , 1994, Theor. Comput. Sci..

[25]  Jirí Adámek,et al.  On tree coalgebras and coalgebra presentations , 2004, Theor. Comput. Sci..

[26]  Lawrence S. Moss Parametric corecursion , 2001, Theor. Comput. Sci..