Measuring Ranks via the Complete Laws of Iterated Contraction

Ranking theory delivers an account of iterated contraction; each ranking function induces a specific iterated contraction behavior. The paper gives a complete axiomatization of that behavior, i.e., a complete set of laws of iterated contraction. It does so by showing how to reconstruct a ranking function from its iterated contraction behavior uniquely up to multiplicative constant and thus how to measure ranks on a ratio scale.

[1]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[2]  SVEN OVE HANSSON,et al.  Reversing the Levi identity , 1993, J. Philos. Log..

[3]  Hans Rott,et al.  Shifting Priorities: Simple Representations for Twenty-Seven Iterated Theory Change Operators , 2009, Towards Mathematical Philosophy.

[4]  Judea Pearl,et al.  On the Logic of Iterated Belief Revision , 1994, Artif. Intell..

[5]  L. Cohen The Implications of Induction , 2019 .

[6]  Wolfgang Spohn,et al.  Ranking Functions, AGM Style , 1999 .

[7]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[8]  Jaap Van Brakel,et al.  Foundations of measurement , 1983 .

[9]  Peter Gärdenfors,et al.  Knowledge in Flux , 1988 .

[10]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[11]  W. Salmon,et al.  Knowledge in Flux , 1991 .

[12]  Peter Gärdenfors,et al.  Belief Revision , 1995 .

[13]  Jonathan Barzilai,et al.  On the foundations of measurement , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[14]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..