A Luminous Transient Event in a Sample of WISE-selected Variable AGNs

Recently Assef et al. presented two catalogs of active galactic nucleus (AGN) candidates over 30,093 deg2 selected from the Wide-field Infrared Survey Explorer (WISE) observations. From their most reliable sample, Assef et al. identified 45 AGN candidates with the highest variability levels in the AllWISE catalog but that are not blazars. Here we present new spectroscopic observations of some of these targets to further constrain their nature. We also study their optical light curves using observations from the Catalina Real-Time Transient Survey (CRTS) and find that only seven show significant optical variability, and that five of those seven are spectroscopically classified as AGNs. In one of them, WISEA J094806.56+031801.7 (W0948+0318), we identify a transient event in the CRTS light curve. We present a detailed analysis of this transient and characterize it through its CRTS light curve and its multiwavelength spectral energy distribution obtained from GALEX, Pan-STARRS, and WISE observations. We find that the most likely source of the transient is a superluminous supernova (SLSN) in W0948+0318. We estimate the total radiated energy to be E = (1.6 ± 0.3) × 1052 erg, making it one of the most energetic SLSNe observed. Based on the lack of change in mid-IR color throughout and after the transient event, we speculate that the location of the SLSN is within the torus of the AGN. We identify nine possible analogs to W0948+0318 based on their WISE light curves. None show optically detected transients and hence suggest significant dust obscuration. Finally, we estimate a rate of >2 × 10−7 yr−1 per AGN for these transients under the conservative assumption that none of the identified analogs have a common origin with the transient in W0948+0318.

[1]  A. Efstathiou,et al.  A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger , 2018, Science.

[2]  A. Drake,et al.  A new physical interpretation of optical and infrared variability in quasars , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  S. Djorgovski,et al.  A Mid-IR Selected Changing-look Quasar and Physical Scenarios for Abrupt AGN Fading , 2018, The Astrophysical Journal.

[4]  L. Dou,et al.  Long-term decline of the mid-infrared emission of normal galaxies: dust echo of tidal disruption flare? , 2018, 1802.05105.

[5]  Martin P. Ward,et al.  A population of highly energetic transient events in the centres of active galaxies , 2017, 1711.04577.

[6]  R. Cutri,et al.  The WISE AGN Catalog , 2017, 1706.09901.

[7]  T. Morokuma,et al.  Superluminous Transients at AGN Centers from Interaction between Black Hole Disk Winds and Broad-line Region Clouds , 2017, 1706.06855.

[8]  S. Djorgovski,et al.  Understanding extreme quasar optical variability with CRTS – I. Major AGN flares , 2017, 1706.03079.

[9]  J. Prieto,et al.  The Ultraviolet Spectroscopic Evolution of the Low-Luminosity Tidal Disruption Event iPTF16fnl , 2017, 1704.02321.

[10]  E. Berger,et al.  PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy , 2017, 1703.07816.

[11]  S. Kozłowski,et al.  Limitations on the recovery of the true AGN variability parameters using Damped Random Walk modeling , 2016, 1611.08248.

[12]  S. Lilly,et al.  OPTICAL VARIABILITY OF AGNs IN THE PTF/iPTF SURVEY , 2016, 1611.03082.

[13]  M. Sullivan,et al.  The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole , 2016, Nature Astronomy.

[14]  P. Giommi,et al.  Active galactic nuclei: what’s in a name? , 2017, The Astronomy and Astrophysics Review.

[15]  Keivan G. Stassun,et al.  The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.

[16]  J. Prieto,et al.  The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh , 2016, 1605.00645.

[17]  S. Woosley,et al.  THE MOST LUMINOUS SUPERNOVAE , 2016, 1602.04865.

[18]  J. Prieto,et al.  ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc , 2016, 1602.01088.

[19]  C. Kochanek,et al.  QUASAR VARIABILITY IN THE MID-INFRARED , 2015, 1509.02467.

[20]  D. Bersier,et al.  ASASSN-15lh: A highly super-luminous supernova , 2015, Science.

[21]  A. B. Danilet,et al.  Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.

[22]  J. Prieto,et al.  Optical observations of the luminous Type IIn Supernova 2010jl for over 900 d , 2015, 1505.01186.

[23]  M. C. Bentz,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. II. SWIFT AND HST REVERBERATION MAPPING OF THE ACCRETION DISK OF NGC 5548 , 2015, 1501.05951.

[24]  T. Grav,et al.  INITIAL PERFORMANCE OF THE NEOWISE REACTIVATION MISSION , 2014, 1406.6025.

[25]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[26]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[27]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[28]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[29]  Haibo Yuan,et al.  Empirical extinction coefficients for the GALEX, SDSS, 2MASS and WISE passbands , 2013, 1301.1427.

[30]  A. J. Drake,et al.  PROBING THE OUTER GALACTIC HALO WITH RR LYRAE FROM THE CATALINA SURVEYS , 2012, 1211.2866.

[31]  K. Denney ARE OUTFLOWS BIASING SINGLE-EPOCH C iv BLACK HOLE MASS ESTIMATES? , 2012 .

[32]  Buell T. Jannuzi,et al.  MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. II. PROPERTIES OF WISE-SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BOÖTES FIELD , 2012, 1209.6055.

[33]  A. Gal-yam Luminous Supernovae , 2012, Science.

[34]  D. Stern,et al.  Using the Bright Ultrahard XMM-Newton survey to define an IR selection of luminous AGN based on WISE colours , 2012, 1208.2530.

[35]  E. Wright,et al.  MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER. I. CHARACTERIZING WISE-SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS , 2012, 1205.0811.

[36]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[37]  R. D’Abrusco,et al.  THE WISE GAMMA-RAY STRIP PARAMETERIZATION: THE NATURE OF THE GAMMA-RAY ACTIVE GALACTIC NUCLEI OF UNCERTAIN TYPE , 2012, 1203.1330.

[38]  C. Kochanek,et al.  IS QUASAR OPTICAL VARIABILITY A DAMPED RANDOM WALK? , 2012, 1202.3783.

[39]  R. D’Abrusco,et al.  IDENTIFICATION OF THE INFRARED NON-THERMAL EMISSION IN BLAZARS , 2011, 1203.0304.

[40]  S. Djorgovski,et al.  THE DISCOVERY AND NATURE OF THE OPTICAL TRANSIENT CSS100217:102913+404220 , 2011, 1103.5514.

[41]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[42]  T. Treu,et al.  GEOMETRIC AND DYNAMICAL MODELS OF REVERBERATION MAPPING DATA , 2011, 1101.4952.

[43]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[44]  Elena Pierpaoli,et al.  AN OPTICAL CATALOG OF GALAXY CLUSTERS OBTAINED FROM AN ADAPTIVE MATCHED FILTER FINDER APPLIED TO SLOAN DIGITAL SKY SURVEY DATA RELEASE 6 , 2010, 1011.0249.

[45]  C. Kochanek,et al.  BLACK HOLE MASS ESTIMATES BASED ON C iv ARE CONSISTENT WITH THOSE BASED ON THE BALMER LINES , 2010, 1009.1145.

[46]  C. S. Kochanek,et al.  AN ALTERNATIVE APPROACH TO MEASURING REVERBERATION LAGS IN ACTIVE GALACTIC NUCLEI , 2010, 1008.0641.

[47]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[48]  A. Drake,et al.  SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT z ≃ 0.2 , 2010, 1006.4162.

[49]  Anthony H. Gonzalez,et al.  LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 μm , 2010 .

[50]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[51]  Arjun Dey,et al.  MID-INFRARED VARIABILITY FROM THE SPITZER DEEP WIDE-FIELD SURVEY , 2010, 1002.3365.

[52]  W. M. Wood-Vasey,et al.  PUSHING THE BOUNDARIES OF CONVENTIONAL CORE-COLLAPSE SUPERNOVAE: THE EXTREMELY ENERGETIC SUPERNOVA SN 2003ma , 2009, 0911.2002.

[53]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[54]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[55]  J. Bird,et al.  DIVERSE KINEMATIC SIGNATURES FROM REVERBERATION MAPPING OF THE BROAD-LINE REGION IN AGNs , 2009 .

[56]  Usa,et al.  QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES , 2009, 0909.1326.

[57]  Takeo Minezaki,et al.  THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hβ , 2009, The Astrophysical Journal.

[58]  E. L. Wright,et al.  THE SPITZER DEEP, WIDE-FIELD SURVEY , 2009, 0906.0024.

[59]  Brandon C. Kelly,et al.  ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS? , 2009, 0903.5315.

[60]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[61]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008, 0806.0512.

[62]  Huan Lin,et al.  A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.

[63]  Christopher W. Morgan,et al.  THE QUASAR ACCRETION DISK SIZE–BLACK HOLE MASS RELATION , 2007, 0707.0305.

[64]  G. Richards,et al.  An Investigation into the Effects of Luminosity on the Mid-Infrared Spectral Energy Distributions of Radio-quiet Quasars , 2007, astro-ph/0702272.

[65]  Charles E. Hansen,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[66]  P. Uttley,et al.  Active galactic nuclei as scaled-up Galactic black holes , 2006, Nature.

[67]  B. Peterson,et al.  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[68]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[69]  J. Prieto,et al.  Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey , 2005, astro-ph/0509240.

[70]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[71]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[72]  D. Grupe A Complete Sample of Soft X-Ray-selected AGNs. II. Statistical Analysis , 2004, astro-ph/0401167.

[73]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[74]  R. Nichol,et al.  The Ensemble Photometric Variability of ~25,000 Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0310336.

[75]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[76]  D. Weinberg,et al.  Quasar Clustering and the Lifetime of Quasars , 2000, astro-ph/0002384.

[77]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[78]  R. Goodrich Spectropolarimetry of 'narrow-line' Seyfert 1 galaxies , 1989 .

[79]  M. G. Watson,et al.  Low-frequency divergent X-ray variability in the Seyfert galaxy NGC4051 , 1987, Nature.

[80]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[81]  D. Osterbrock,et al.  The spectra of narrow-line Seyfert 1 galaxies , 1985 .