Cooperative communication in wireless sensor network using low density parity check codes

Energy efficient data transmission is one of the key factors for energy constraint wireless sensor network (WSN). Cooperative communication explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN). In this paper, an energy efficient cooperative technique is proposed considering low density parity check (LDPC) codes. The result shows that the proposed cooperative communication outperforms SISO transmission when the error correction code is considered. Bit error rate (BER) analysis is also performed. In this work, it shows that the lower encoding rate offers better error characteristics for same signal to noise ratio (SNR)

[1]  Mohsen Shiva,et al.  Power optimised channel coding in wireless sensor networks using low-density parity-check codes , 2007, IET Commun..

[2]  Frank L. Lewis,et al.  Wireless Sensor Network Design , 2010 .

[3]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[4]  Mina Sartipi,et al.  Source and channel coding in wireless sensor networks using LDPC codes , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[5]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[6]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[7]  Jinsang Kim,et al.  Energy Efficient Cooperative Technique for IEEE 1451 Based Wireless Sensor Network , 2008, 2008 IEEE Wireless Communications and Networking Conference.

[8]  Dennis Goeckel Optimal Power Allocation in Channel-Coded Wireless Networks , 2004 .

[9]  Ian F. Akyildiz,et al.  Energy efficiency based packet size optimization in wireless sensor networks , 2003, Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, 2003..

[10]  Andrea J. Goldsmith,et al.  Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks , 2004, IEEE Journal on Selected Areas in Communications.

[11]  Daniel A. Spielman,et al.  Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.

[12]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[13]  Z.H. Kashani,et al.  BCH coding and multi-hop communication in wireless sensor networks , 2006, 2006 IFIP International Conference on Wireless and Optical Communications Networks.

[14]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[15]  Heikki Karvonen,et al.  CODING FOR ENERGY EFFICIENT MULTIHOP WIRELESS SENSOR NETWORKS , 2004 .

[16]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[17]  Zixiang Xiong,et al.  Slepian-Wolf Coding of Three Binary Sources Using LDPC Codes , 2003 .

[18]  Niraj K. Jha,et al.  High-level software energy macro-modeling , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).