On the 1.375-Approximation Algorithm for Sorting by Transpositions in O(n logn) Time

Sorting by Transpositions is an NP-hard problem. Elias and Hartman proposed a 1.375-approximation algorithm, the best ratio so far, which runs in O(n 2) time. Firoz et al. proposed an improvement to the running time, from O(n 2) down to O(n logn), using Feng and Zhu's permutation trees. We provide counter-examples to the correctness of Firoz et al.'s strategy, showing that it is not possible to reach a component by sufficient extensions using the method proposed by them.

[1]  Guillaume Fertin,et al.  Sorting by Transpositions Is Difficult , 2010, SIAM J. Discret. Math..

[2]  Celina M. H. de Figueiredo,et al.  Unitary Toric Classes, the Reality and Desire Diagram, and Sorting by Transpositions , 2010, SIAM J. Discret. Math..

[3]  Mohammad Sohel Rahman,et al.  The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in O(n log n) Time , 2011, J. Comput. Biol..

[4]  Daming Zhu,et al.  Faster algorithms for sorting by transpositions and sorting by block interchanges , 2007, TALG.

[5]  Zanoni Dias,et al.  An improved 1.375-approximation algorithm for the transposition distance problem , 2010, BCB '10.

[6]  Ron Shamir,et al.  A simpler and faster 1.5-approximation algorithm for sorting by transpositions , 2006, Inf. Comput..

[7]  Vineet Bafna,et al.  Sorting by Transpositions , 1998, SIAM J. Discret. Math..

[8]  Haim Kaplan,et al.  Efficient Data Structures and a New Randomized Approach for Sorting Signed Permutations by Reversals , 2003, CPM.

[9]  D. Sankoff,et al.  Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Pavel A. Pevzner,et al.  Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals , 1999, J. ACM.

[11]  Tzvika Hartman,et al.  A 1.375-Approximation Algorithm for Sorting by Transpositions , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[12]  Celina M. H. de Figueiredo,et al.  Transposition Diameter and Lonely Permutations , 2012, BSB.

[13]  Carlos Eduardo Ferreira,et al.  Advances in Bioinformatics and Computational Biology, 5th Brazilian Symposium on Bioinformatics, BSB 2010, Rio de Janeiro, Brazil, August 31-September 3, 2010. Proceedings , 2010, BSB.

[14]  Celina M. H. de Figueiredo,et al.  Bounds on the Transposition Distance for Lonely Permutations , 2010, BSB.

[15]  Celina M. H. de Figueiredo,et al.  Analysis and Implementation of Sorting by Transpositions Using Permutation Trees , 2011, BSB.