NEAR-INFRARED THERMAL EMISSION FROM THE HOT JUPITER TrES-2b: GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE

We present near-infrared Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-2b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect its thermal emission with an eclipse depth of 0.062+0.013 ?0.011% (5?). Our best-fit secondary eclipse is consistent with a circular orbit (a 3? upper limit on the eccentricity, e, and argument or periastron, ?, of |e?cos ??| < 0.0090), in agreement with mid-infrared detections of the secondary eclipse of this planet. A secondary eclipse of this depth corresponds to a dayside Ks-band brightness temperature of TB = 1636+79 ?88?K. Our thermal emission measurement, when combined with the thermal emission measurements using Spitzer/IRAC from O'Donovan and collaborators, suggests that this planet exhibits relatively efficient dayside to nightside redistribution of heat and a near isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. It is unclear if the atmosphere of TrES-2b requires a temperature inversion; if it does it is likely due to chemical species other than TiO/VO as the atmosphere of TrES-2b is too cool to allow TiO/VO to remain in gaseous form. Our secondary eclipse has the smallest depth of any detected from the ground, at around 2 ?m, to date.

[1]  T. Barman On the Presence of Water and Global Circulation in the Transiting Planet HD 189733b , 2008, 0802.0854.

[2]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[3]  Sara Seager,et al.  The Very Low Albedo of an Extrasolar Planet: MOST Space-based Photometry of HD 209458 , 2007, 0711.4111.

[4]  I. Hubeny,et al.  Optical Albedo Theory of Strongly Irradiated Giant Planets: The Case of HD 209458b , 2008, 0803.2523.

[5]  W. C. Bowman,et al.  SPITZER IRAC SECONDARY ECLIPSE PHOTOMETRY OF THE TRANSITING EXTRASOLAR PLANET HAT-P-1b , 2009, 0911.2218.

[6]  D. Charbonneau,et al.  DETECTION OF PLANETARY EMISSION FROM THE EXOPLANET TrES-2 USING SPITZER/IRAC , 2009, 0909.3073.

[7]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[8]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[9]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[10]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[11]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[12]  A. Loeb A Dynamical Method for Measuring the Masses of Stars with Transiting Planets , 2005, astro-ph/0501548.

[13]  M. López-Morales,et al.  Thermal Emission from Transiting Very Hot Jupiters: Prospects for Ground-based Detection at Optical Wavelengths , 2007, 0708.0822.

[14]  Observatoire de Geneve,et al.  VLT transit and occultation photometry for the bloated planet CoRoT-1b , 2009, 0905.4571.

[15]  B. Croll Markov Chain Monte Carlo Methods Applied to Photometric Spot Modeling , 2006 .

[16]  D. Saumon,et al.  Atmosphere, Interior, and Evolution of the Metal-rich Transiting Planet HD 149026b , 2006 .

[17]  William Rambold,et al.  WIRCam: the infrared wide-field camera for the Canada-France-Hawaii Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[18]  Mercedes Lopez-Morales,et al.  Ground-based secondary eclipse detection of the very-hot Jupiter OGLE-TR-56b , 2009 .

[19]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[20]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[21]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[22]  David Charbonneau,et al.  An Upper Limit on the Reflected Light from the Planet Orbiting the Star τ Bootis , 1999, astro-ph/9907195.

[23]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[24]  Massachusetts Institute of Technology,et al.  Improving Stellar and Planetary Parameters of Transiting Planet Systems: The Case of TrES-2 , 2007, 0704.2938.

[25]  Pin Chen,et al.  Submitted to the Astrophysical Journal Letters Molecular Signatures in the Near Infrared Dayside Spectrum of , 2022 .

[26]  David Charbonneau,et al.  TrES-2: The First Transiting Planet in the Kepler Field , 2006, astro-ph/0609335.

[27]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[28]  Avi Shporer,et al.  THE TRANSIT LIGHT CURVE PROJECT. X. A CHRISTMAS TRANSIT OF HD 17156b , 2008, 0810.4725.

[29]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[30]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.