Most immunoglobulin heavy chain switch mu rearrangements in B‐cell chronic lymphocytic leukemia are internal deletions

[1]  T. Honjo,et al.  Linking class-switch recombination with somatic hypermutation , 2001, Nature Reviews Molecular Cell Biology.

[2]  J. Benichou,et al.  Expression of unmutated VH genes is a detrimental prognostic factor in chronic lymphocytic leukemia. , 2000, Blood.

[3]  F. Alt,et al.  The Ig heavy chain intronic enhancer core region is necessary and sufficient to promote efficient class switch recombination. , 1999, International immunology.

[4]  M. Keating Chronic lymphocytic leukemia. , 1999, Seminars in oncology.

[5]  T J Hamblin,et al.  Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. , 1999, Blood.

[6]  L. Hammarström,et al.  Targeting of human switch recombination breakpoints: implications for the mechanism of μ ‐ γ isotype switching , 1999 .

[7]  T. Honjo,et al.  Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. , 1998, Immunity.

[8]  M. Morrison,et al.  Aberrant rearrangements of the immunoglobulin heavy chain switch region in chronic B-cell leukemia. , 1998, Leukemia & lymphoma.

[9]  P. L. Bergsagel,et al.  Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  P. Gregersen,et al.  Examples of in vivo isotype class switching in IgM+ chronic lymphocytic leukemia B cells. , 1996, The Journal of clinical investigation.

[11]  O. Burrone,et al.  IgM-producing chronic lymphocytic leukemia cells undergo immunoglobulin isotype-switching without acquiring somatic mutations. , 1996, The Journal of clinical investigation.

[12]  M. Grever,et al.  National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. , 1996, Blood.

[13]  F. Caligaris‐cappio B-chronic lymphocytic leukemia: a malignancy of anti-self B cells. , 1996, Blood.

[14]  J. Banchereau,et al.  B-chronic lymphocytic leukemias can undergo isotype switching in vivo and can be induced to differentiate and switch in vitro. , 1996, Blood.

[15]  N. Chiorazzi,et al.  Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells , 1995, The Journal of experimental medicine.

[16]  H. K. Cheah,et al.  Secondary deletional recombination of rearranged switch region in Ig isotype-switched B cells. A mechanism for isotype stabilization. , 1995, Journal of immunology.

[17]  G. Dighiero,et al.  The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. , 1994, Immunology today.

[18]  T. Logtenberg,et al.  Molecular analysis of VH and VL regions expressed in IgG-bearing chronic lymphocytic leukemia (CLL): further evidence that CLL is a heterogeneous group of tumors. , 1993, Blood.

[19]  A. Casadevall,et al.  Mu switch region deletion is associated with both T cell independent and T cell dependent responses. , 1993, Molecular immunology.

[20]  G. Rechavi,et al.  Analysis of rearranged immunoglobulin genes indicating a process of clonal evolution in chronic lymphocytic leukaemia , 1993, British journal of haematology.

[21]  G. Hertz,et al.  DNA sequences at immunoglobulin switch region recombination sites. , 1993, Nucleic acids research.

[22]  M. Wabl,et al.  Immunoglobulin class switch recombination. , 1993, Annual review of immunology.

[23]  L. Luzzatto,et al.  Anomalous rearrangements of the immunoglobulin heavy chain genes in human leukemias support the loop-out mechanism of class switch. , 1992, The Journal of clinical investigation.

[24]  R. Geha,et al.  Deletional switch recombination occurs in interleukin-4-induced isotype switching to IgE expression by human B cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Milstein,et al.  Mutation Drift and Repertoire Shift in the Maturation of the Immune Response , 1987, Immunological reviews.

[26]  Klaus Rajewsky,et al.  Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses , 1987, Cell.

[27]  Leroy Hood,et al.  IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts , 1981, Nature.