Mathematical Programs with Complementarity Constraints : Theory, Methods and Applications

[1]  Stephen J. Wright,et al.  Some properties of regularization and penalization schemes for MPECs , 2004, Optim. Methods Softw..

[2]  S. Skaperdas Contest success functions , 1996 .

[3]  William E. Stein,et al.  Asymmetric Rent-Seeking with More than Two Contestants , 2002 .

[4]  Sonja Veelken,et al.  A New Relaxation Scheme for Mathematical Programs with Equilibrium Constraints: Theory and Numerical Experience , 2009 .

[5]  J. Pérez-Castrillo,et al.  A general analysis of rent-seeking games , 1992 .

[6]  Christian Kanzow,et al.  Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints , 2011, Mathematical Programming.

[7]  Masao Fukushima,et al.  Complementarity Constraint Qualifications and Simplified B-Stationarity Conditions for Mathematical Programs with Equilibrium Constraints , 1999, Comput. Optim. Appl..

[8]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[9]  Christian Kanzow,et al.  On M-stationary points for mathematical programs with equilibrium constraints , 2005 .

[10]  S. Y. Wang,et al.  A globally convergent approximately active search algorithm for solving mathematical programs with linear complementarity constraints , 2004, Numerische Mathematik.

[11]  Asuman E Ozdaglar,et al.  Pseudonormality and a Lagrange Multiplier Theory for Constrained Optimization , 2002 .

[12]  J. Schupp,et al.  Wahrgenommene Einkommensgerechtigkeit konjunkturabhängig , 2010 .

[13]  Francis Tin-Loi,et al.  Parameter identification of quasibrittle materials as a mathematical program with equilibrium constraints , 2001 .

[14]  Yosef Mealem,et al.  Political Culture and Discrimination in Contests , 2010, SSRN Electronic Journal.

[15]  C. Kanzow,et al.  A Fritz John Approach to First Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints , 2003 .

[16]  A. Dasgupta,et al.  Designing an optimal contest , 1998 .

[17]  Yoshihiro Kanno,et al.  Arc-Length Method for Frictional Contact Problems Using Mathematical Programming with Complementarity Constraints , 2006 .

[18]  Joseph N. Prashker,et al.  The applicability of non-cooperative game theory in transport analysis , 2006 .

[19]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[20]  Qiang Fu,et al.  A Theory of Affirmative Action in College Admissions , 2005 .

[21]  Benjamin F. Hobbs,et al.  Leader-Follower Equilibria for Electric Power and NOx Allowances Markets , 2006, Comput. Manag. Sci..

[22]  Christian Kanzow,et al.  Convergence of a local regularization approach for mathematical programmes with complementarity or vanishing constraints , 2012, Optim. Methods Softw..

[23]  Michael P. Friedlander,et al.  A two-sided relaxation scheme for Mathematical Programs with Equilibrium Constraints , 2005, SIAM J. Optim..

[24]  J. Franke Does Affirmative Action Reduce Effort Incentives? – A Contest Game Analysis , 2010 .

[25]  M. Hestenes Optimization Theory: The Finite Dimensional Case , 1975 .

[26]  J. V. Outrata,et al.  Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case , 1999, Kybernetika.

[27]  Jiří V. Outrata,et al.  Optimality Conditions for Disjunctive Programs with Application to Mathematical Programs with Equilibrium Constraints , 2007 .

[28]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[29]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[30]  R. Fletcher Practical Methods of Optimization , 1988 .

[31]  Douglass J. Wilde,et al.  Foundations of Optimization. , 1967 .

[32]  René Henrion,et al.  Calmness of constraint systems with applications , 2005, Math. Program..

[33]  Gui-Hua Lin,et al.  A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints , 2002, Ann. Oper. Res..

[34]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[35]  G. Tullock Efficient Rent Seeking , 2001 .

[36]  Lorenz T. Biegler,et al.  An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs) , 2005, SIAM J. Optim..

[37]  J. J. Ye Constraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 2000, SIAM J. Optim..

[38]  Alexey F. Izmailov,et al.  Semismooth Newton method for the lifted reformulation of mathematical programs with complementarity constraints , 2012, Comput. Optim. Appl..

[39]  Jirí V. Outrata,et al.  A Generalized Mathematical Program with Equilibrium Constraints , 2000, SIAM J. Control. Optim..

[40]  Gui-Hua Lin,et al.  Some Exact Penalty Results for Nonlinear Programs and Mathematical Programs with Equilibrium Constraints , 2003 .

[41]  Christian Kanzow,et al.  Improved convergence properties of the Lin-Fukushima-Regularization method for mathematical programs with complementarity constraints , 2011 .

[42]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[43]  Sven Leyffer,et al.  On the global minimization of the value-at-risk , 2004, Optim. Methods Softw..

[44]  Qian Wang,et al.  Review of formulations for structural and mechanical system optimization , 2005 .

[45]  Mihai Anitescu,et al.  On Using the Elastic Mode in Nonlinear Programming Approaches to Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..

[46]  Masao Fukushima,et al.  A Globally Convergent Sequential Quadratic Programming Algorithm for Mathematical Programs with Linear Complementarity Constraints , 1998, Comput. Optim. Appl..

[47]  M. Guignard Generalized Kuhn–Tucker Conditions for Mathematical Programming Problems in a Banach Space , 1969 .

[48]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[49]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[50]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[51]  D. Ralph,et al.  Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints , 2004 .

[52]  Ian L. Gale,et al.  Caps on Political Lobbying , 1998 .

[53]  Matthias Dahm,et al.  Rent seeking and rent dissipation: A neutrality result , 2010 .

[54]  Jie Sun,et al.  Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints , 2004, Math. Program..

[55]  Lorenz T. Biegler,et al.  Mathematical programs with equilibrium constraints (MPECs) in process engineering , 2003, Comput. Chem. Eng..

[56]  Neil J. Mitchell,et al.  The Determinants of Direct Corporate Lobbying in the European Union , 2009 .

[57]  Daniel Ralph,et al.  Smooth SQP Methods for Mathematical Programs with Nonlinear Complementarity Constraints , 1999, SIAM J. Optim..

[58]  Jean-Pierre Dussault,et al.  A New Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2009, SIAM J. Optim..

[59]  Kofi O. Nti Maximum efforts in contests with asymmetric valuations , 2004 .

[60]  Jiří V. Outrata,et al.  Exact penalty results for mathematical programs with vanishing constraints , 2010 .

[61]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[62]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[63]  O. Mangasarian,et al.  Multisurface method of pattern separation for medical diagnosis applied to breast cytology. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Jorge Nocedal,et al.  Interior Methods for Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[65]  S. Leyffer Complementarity constraints as nonlinear equations: Theory and numerical experience , 2006 .

[66]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[67]  Jane J. Ye,et al.  Partial Exact Penalty for Mathematical Programs with Equilibrium Constraints , 2008 .

[68]  Justin Marion Are bid preferences benign? The effect of small business subsidies in highway procurement auctions , 2007 .

[69]  Derek J. Clark,et al.  Contest success functions: an extension , 1998 .

[70]  Patrice Marcotte,et al.  A bilevel programming approach to the travelling salesman problem , 2004, Oper. Res. Lett..

[71]  S. Scholtes,et al.  Exact Penalization of Mathematical Programs with Equilibrium Constraints , 1999 .

[72]  Christian Kanzow,et al.  Theorie und Numerik restringierter Optimierungsaufgaben , 2002 .

[73]  Asuman E. Ozdaglar,et al.  The relation between pseudonormality and quasiregularity in constrained optimization , 2004, Optim. Methods Softw..

[74]  C. Kanzow,et al.  On the Guignard constraint qualification for mathematical programs with equilibrium constraints , 2005 .

[75]  Christian Kanzow,et al.  Abadie-Type Constraint Qualification for Mathematical Programs with Equilibrium Constraints , 2005 .

[76]  Jane J. Ye,et al.  First-Order and Second-Order Conditions for Error Bounds , 2003, SIAM J. Optim..

[77]  Christian Kanzow,et al.  A New Regularization Method for Mathematical Programs with Complementarity Constraints with Strong Convergence Properties , 2013, SIAM J. Optim..

[78]  E. Lazear,et al.  Rank-Order Tournaments as Optimum Labor Contracts , 1979, Journal of Political Economy.

[79]  R. McAfee,et al.  Government procurement and international trade , 1989 .

[80]  Hao Jia,et al.  A stochastic derivation of the ratio form of contest success functions , 2008 .

[81]  Oliver Stein Lifting mathematical programs with complementarity constraints , 2012, Math. Program..

[82]  F. Szidarovszky,et al.  On the Existence and Uniqueness of Pure Nash Equilibrium in Rent-Seeking Games , 1997 .

[83]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[84]  Roger Hartley,et al.  Asymmetric contests with general technologies , 2005 .

[85]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[86]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[87]  Hanming Fang,et al.  Lottery Versus All-Pay Auction Models of Lobbying , 2002 .

[88]  Zhi-Quan Luo,et al.  Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints , 1996, Math. Program..

[89]  O. Mangasarian Equivalence of the Complementarity Problem to a System of Nonlinear Equations , 1976 .

[90]  Kofi O. Nti Rent-seeking with asymmetric valuations , 1999 .

[91]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[92]  Donald W. Hearn,et al.  An MPEC approach to second-best toll pricing , 2004, Math. Program..

[93]  W. Hansen,et al.  Disaggregating and Explaining Corporate Political Activity: Domestic and Foreign Corporations in National Politics , 2000, American Political Science Review.

[94]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[95]  Christian Kanzow,et al.  A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints , 2006 .

[96]  Mihai Anitescu,et al.  Global Convergence of an Elastic Mode Approach for a Class of Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..