Modelling the Venusian airglow

Context. Modelling of the Venusian ionosphere fluorescence is required, to analyse data being collected by the SPICAV instrument onboard Venus Express. Aims. We present the modelling of the production of excited states of O, CO and N 2 , which enables the computation of nightglow emissions. In the dayside, we compute several emissions, taking advantage of the small influence of resonant scattering for forbidden transitions. Methods. We compute photoionisation and photodissociation mechanisms, and the photoelectron production. We compute electron impact excitation and ionisation, through a multi-stream stationary kinetic transport code. Finally, we compute the ion recombination using a stationary chemical model. Results. We predict altitude density profiles for O( 1 S) and O( 1 D) states, and emissions corresponding to their different transitions. They are found to agree with observations. In the nightside, we discuss the different O( 1 S) excitation mechanisms as a source of green line emission. We calculate production intensities of the O( 3 S) and O( 5 S) states. ForCO, we compute the Cameron bands and the Fourth Positive bands emissions. For N 2 , we compute the LBH, first and Second Positive bands. All values are compared successfully to experiments when data are available. Conclusions. For the first time, a comprehensive model is proposed to compute dayglow and nightglow emissions of the Venusian upper atmosphere. It relies on previous works with noticeable improvements, both on the transport side and on the chemical side. In the near future, a radiative-transfer model will be used to compute optically-thick lines in the dayglow, and a fluid model will be added to compute ion densities.

[1]  D. Siskind,et al.  O(1S → 1D,3P) branching ratio as measured in the terrestrial nightglow , 2006 .

[2]  W. Kent Tobiska,et al.  Revised solar extreme ultraviolet flux model , 1991 .

[3]  L. Paxton,et al.  Analysis and interpretation of observations of airglow at 297 nm in the Venus thermosphere , 1984 .

[4]  O. Dutuit,et al.  15N+ + CD4 and O+ + 13CO2 State-Selected Ion−Molecule Reactions Relevant to the Chemistry of Planetary Ionospheres† , 2004 .

[5]  Wayne T. Kasprzak,et al.  Global empirical model of the Venus thermosphere , 1983 .

[6]  L. H. Brace,et al.  Empirical models of the electron temperature and density in the Venus ionosphere , 1980 .

[7]  G. Lawrence Photodissociation of CO2 to Produce CO(a 3Π) , 1972 .

[8]  G. Lawrence Production of O(1S) from Photodissociation of CO2 , 1972 .

[9]  David Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: 1.27‐μm O2(a 1Δ g ) airglow from the upper atmosphere , 1996 .

[10]  V. Argabright,et al.  Excitation of the Venus Night Airglow , 1977, Science.

[11]  T. Kassal Scattering of solar Lyman alpha by the (14, 0) band of the fourth positive system of CO , 1976 .

[12]  J. Ajello Emission Cross Sections of CO by Electron Impact in the Interval 1260–5000 Å. I , 1971 .

[13]  T. Bida,et al.  Discovery of the atomic oxygen green line in the Venus night airglow. , 2001, Science.

[14]  W. J. Zande,et al.  Absolute cross sections and final-state distributions for dissociative recombination and excitation of CO + (v=0) using an ion storage ring , 1998 .

[15]  T. Slanger,et al.  New perspectives on the Venus nightglow , 1993 .

[16]  V. Anicich,et al.  Gas-phase reactions of some positive ions with atomic and molecular nitrogen , 1998 .

[17]  P. Blelly,et al.  The TEC and F2 parameters as tracers of the ionosphere and thermosphere , 2002 .

[18]  P. Drossart,et al.  Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express , 2006 .

[19]  D. Judge,et al.  The atomic oxygen 1304 Å emission produced through photodissociation of CO and CO2 , 1979 .

[20]  N. Chanover,et al.  The Venus nightglow: Ground-based observations and chemical mechanisms , 2006 .

[21]  Jane L. Fox,et al.  Solar activity variations of the Venus thermosphere/ionosphere , 2001 .

[22]  R. Friedman,et al.  Collisional excitation of metastable oxygen O(1D) atoms through the B3∑−u channel of O2 , 1992 .

[23]  J. Mentall,et al.  Cross sections for production of the CO(A 1Π−X 1Σ) Fourth Positive band system and O(3S) by photodissociation of CO2 , 1973 .

[24]  M. Tsuji,et al.  Nascent rovibrational distributions of CO(d 3Δi,e 3Σ−,a′ 3Σ+) produced in the dissociative recombination of CO2+ with electrons , 1998 .

[25]  K. Kimura,et al.  Photoelectron angular distribution and assignments of photoelectron spectra of nitrogen dioxide, nitromethane and nitrobenzene , 1982 .

[26]  R. B. Cohen,et al.  Quenching of laser induced fluorescence of O2 (b1Σ+g) by O2 and N2 , 1976 .

[27]  J. Frederick,et al.  Morning and evening behavior of the F region green line emission: Evidence concerning the sources of O(¹S) , 1977 .

[28]  Joseph T. Vanderslice,et al.  Franck-Condon factors for permitted transitions in N sub 2. , 1966 .

[29]  J. Frederick,et al.  The O I (λ5577 Å) airglow: Observations and excitation mechanisms , 1976 .

[31]  F. Stuhl,et al.  Temperature-dependent quenching of O2(b 1Σ+g) by H2, D2, CO2, HN3, DN3, HNCO and DNCO , 1994 .

[32]  D. Perner,et al.  Rate constants for the quenching of N2 (A 3Σu+, vA = 0 – 8) by CO, CO2, NH3, NO, and O2 , 1974 .

[33]  T. Slanger,et al.  Photodissociation quantum yields of CO2 between 1200 and 1500 A , 1974 .

[34]  Carl P. Simon,et al.  Prediction of a N2++ layer in the upper atmosphere of Titan , 2005 .

[35]  T. Slanger,et al.  The O2 (C³Δu → a¹Δg) bands in the nightglow spectrum of Venus , 1978 .

[36]  B. Solheim,et al.  A measurement of the O2(b1Sg+-X3Sg-) atmospheric band and the OI(1S) green line in the nightglow , 1979 .

[37]  W. Kent Tobiska,et al.  Recent solar extreme ultraviolet irradiance observations and modeling: A review , 1993 .

[38]  O. Dutuit,et al.  Modelling dications in the diurnal ionosphere of Venus , 2007 .

[39]  J. Fox,et al.  Ionization, luminosity, and heating of the upper atmosphere of Mars , 1979 .

[40]  C. Lathuillère,et al.  Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDII coordinated measurements , 1999 .

[41]  K. Schofield Rate constants for the gaseous interaction of O(21D2) and O(21S0 - a critical evaluation , 1978 .

[42]  L. Esposito,et al.  Ultraviolet Spectroscopy of Venus: Initial Results from the Pioneer Venus Orbiter , 1979, Science.

[43]  C. Russell,et al.  The Venus ionosphere , 1985 .

[44]  G. Streit,et al.  Temperature dependence of O(1D) rate constants for reactions with O2, N2, CO2, O3, and H2O , 1976 .

[45]  F. P. Capetanakis,et al.  Temperature dependence of the quenching of O(1S) by simple inorganic molecules , 1993 .

[46]  W. C. Knudsen,et al.  Suprathermal electron fluxes in the Venus nightside ionosphere at moderate and high solar activity , 1996 .

[47]  T. C. James Transition moments, Franck-Condon factors, and lifetimes of forbidden transitions - Calculation of the intensity of the Cameron system of CO. , 1971 .

[48]  P. Feldman,et al.  Far-Ultraviolet Spectroscopy of Venus and Mars at 4 Å Resolution with the Hopkins Ultraviolet Telescope on Astro-2 , 2000, astro-ph/0004024.

[49]  S. Chapman The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence , 1931 .

[50]  O. Witasse,et al.  Prediction of a CO22+ layer in the atmosphere of Mars , 2002 .

[51]  R. A. Cox,et al.  Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry , 1997 .

[52]  V. Krasnopolsky Excitation of oxygen emissions in the night airglow of the terrestrial planets , 1981 .

[53]  S. Leone,et al.  Infrared chemiluminescence from vibrationally excited no+: product branching in the N+ + O2 ion-molecule reaction , 1983 .

[54]  L. Bossy SOLAR INDICES AND SOLAR U.V.-IRRADIANCES , 1983 .

[55]  B. Thrush,et al.  A laboratory study of the mechanism of the oxygen airglow , 1994 .

[56]  R. P. Singhal Electron density fluctuations in the nightside Venus ionosphere : Role of gravity waves , 1996 .

[57]  F. R. Harris,et al.  An assessment of proposed O(1S) and O2(b1Σg+) nightglow excitation parameters , 1990 .

[58]  D. Shemansky N2 Vegard–Kaplan System in Absorption , 1969 .

[59]  R. Elphic,et al.  New empirical models of the electron temperature and density in the Venus ionosphere with application to transterminator flow , 1984 .

[60]  M. P. Skrzypkowski,et al.  Measurement of the absolute yield of CO(a 3Π)+O products in the dissociative recombination of CO2+ ions with electrons , 1998 .

[61]  J. Lilensten,et al.  Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations , 1994 .

[62]  Jane L. Fox,et al.  Structure, luminosity, and dynamics of the Venus thermosphere , 1991 .

[63]  C. P. Pike,et al.  N2 triplet band systems and atomic oxygen in the dayglow , 1997 .

[64]  A. F. Hildebrandt,et al.  The 5577 A airglow emission mechanism , 1961 .

[65]  R. Hartle,et al.  Hydrogen and deuterium in the thermosphere of Venus: Solar cycle variations and escape , 1996 .

[66]  F. Leblanc,et al.  Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express , 2006 .

[67]  K. A. Berrington,et al.  Effective collision strengths for forbidden transitions in e-N and e-o scattering , 1981 .

[68]  F. Fehsenfeld,et al.  Thermal Energy Ion—Neutral Reaction Rates. II. Some Reactions of Ionospheric Interest , 1966 .

[69]  J. P. Doering,et al.  Absolute differential and integral electron excitation cross sections for atomic oxygen, 6, the ³P → ³P and ³P → 5P transitions from 13.87 to 100 eV , 1988 .

[70]  F. G. Eparvier,et al.  Euv97: Improvements to Euv Irradiance Modeling in the Soft X-Rays and FUV , 1998 .

[71]  G. P. Mantas Large 6300‐Å airglow intensity enhancements observed in Ionosphere Heating Experiments are excited by thermal electrons , 1994 .

[72]  S. Leone,et al.  Branching ratios for electronically excited oxygen atoms formed in the reaction of N+ with O2 at 300 K , 1986 .

[73]  R. Atkinson,et al.  Temperature Dependence of O(1S) Deactivation by CO2, O2, N2, and Ar , 1972 .

[74]  O. Witasse,et al.  Prediction and modelling of doubly-charged ions in the Earth's upper atmosphere , 2005 .

[75]  L. H. Andersen,et al.  The Source of Green Light Emission Determined from a Heavy-Ion Storage Ring Experiment , 1997 .

[76]  S. Leone,et al.  Auroral implications of recent measurements on and formation in the reaction of N+ with O2 , 1985 .

[77]  J. Fox Advances in the Aeronomy of Venus and Mars , 2002 .

[78]  D. B. Jenkins,et al.  ETON 2: Quenching parameters for the proposed precursors of O2(b1Σg+) and O(1S) in the terrestrial nightglow , 1986 .