The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies

[1]  T. Kleine,et al.  Origin of volatile element depletion among carbonaceous chondrites , 2020, Earth and Planetary Science Letters.

[2]  M. Trieloff,et al.  Microporosity and parent body of the rubble-pile NEA (162173) Ryugu , 2020, Icarus.

[3]  H. Hiesinger,et al.  Mid-infrared reflectance spectroscopy of carbonaceous chondrites and Calcium–Aluminum-rich inclusions , 2020, Planetary and Space Science.

[4]  A. Bischoff,et al.  Classification of CM chondrite breccias—Implications for the evaluation of samples from the OSIRIS‐REx and Hayabusa 2 missions , 2020, Meteoritics & Planetary Science.

[5]  I. Franchi,et al.  Linking asteroids and meteorites to the primordial planetesimal population , 2020, Geochimica et Cosmochimica Acta.

[6]  E. A. Lima,et al.  Evidence for Asteroid Scattering and Distal Solar System Solids From Meteorite Paleomagnetism , 2020, The Astrophysical Journal.

[7]  P. Hoppe,et al.  Hydrogen isotopic composition of CI- and CM-like clasts from meteorite breccias – Sampling unknown sources of carbonaceous chondrite materials , 2020 .

[8]  F. Torab,et al.  Triple oxygen isotope variations in magnetite from iron-oxide deposits, central Iran, record magmatic fluid interaction with evaporite and carbonate host rocks , 2020 .

[9]  A. Brearley,et al.  Altered primary iron sulfides in CM2 and CR2 carbonaceous chondrites: Insights into parent body processes , 2020, Meteoritics & Planetary Science.

[10]  Z. Sharp,et al.  An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2 , 2020 .

[11]  C. Russell,et al.  Ceres’ partial differentiation: undifferentiated crust mixing with a water-rich mantle , 2020, Astronomy & Astrophysics.

[12]  J. Borovička,et al.  The Renchen L5-6 chondrite breccia – The first confirmed meteorite fall from Baden-Württemberg (Germany) , 2019, Geochemistry.

[13]  M. Zolensky,et al.  A light, chondritic xenolith in the Murchison (CM) chondrite – Formation by fluid-assisted percolation during metasomatism? , 2019, Geochemistry.

[14]  S. Tikoo,et al.  Paleomagnetism of the Orgueil and Ivuna meteorites and implications for the evolution of the CI chondrite parent body , 2019 .

[15]  S. Russell,et al.  Linking mineralogy and spectroscopy of highly aqueously altered CM and CI carbonaceous chondrites in preparation for primitive asteroid sample return , 2019, Meteoritics & Planetary Science.

[16]  E. Hauri,et al.  Calcite and dolomite formation in the CM parent body: Insight from in situ C and O isotope analyses , 2019, Geochimica et Cosmochimica Acta.

[17]  W. Neumann,et al.  Differentiation of Enceladus and Retention of a Porous Core , 2019, The Astrophysical Journal.

[18]  A. Bischoff,et al.  Modal abundances of coarse-grained (>5 μm) components within CI-chondrites and their individual clasts – Mixing of various lithologies on the CI parent body(ies) , 2019 .

[19]  T. Kleine,et al.  Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs , 2019, Geochimica et Cosmochimica Acta.

[20]  S. Sandford,et al.  Brecciated Boulders: Evidence for Impact Mixing on Bennu's Parent Body , 2019 .

[21]  A. Bischoff,et al.  Classification of 13 CM Chondrite Breccias and CM Clasts in Two Achondrites , 2019 .

[22]  H. Haack,et al.  Ejby—A new H5/6 ordinary chondrite fall in Copenhagen, Denmark , 2019, Meteoritics & Planetary Science.

[23]  C. Alexander Quantitative models for the elemental and isotopic fractionations in chondrites: The carbonaceous chondrites , 2019, Geochimica et Cosmochimica Acta.

[24]  K. Zuber,et al.  The muon intensity in the Felsenkeller shallow underground laboratory , 2019, Astroparticle Physics.

[25]  R. Jaumann,et al.  Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.

[26]  M. Yamada,et al.  The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy , 2019, Science.

[27]  Jia Liu,et al.  Chromium Isotopic Evidence for an Early Formation of Chondrules from the Ornans CO Chondrite , 2019, The Astrophysical Journal.

[28]  M. K. Crombie,et al.  Evidence for widespread hydrated minerals on asteroid (101955) Bennu , 2019, Nature Astronomy.

[29]  P. Hoppe,et al.  Oxygen and Hydrogen Isotopic Evidence for the Existence of Several C1 Parent Bodies in the Early Solar System , 2019 .

[30]  M. K. Crombie,et al.  The Unexpected Surface of Asteroid (101955) Bennu , 2019, Nature.

[31]  Y. Amelin,et al.  Carbonaceous achondrites Northwest Africa 6704/6693: Milestones for early Solar System chronology and genealogy , 2019, Geochimica et Cosmochimica Acta.

[32]  M. Menneken,et al.  Temperature constraints by Raman spectroscopy of organic matter in volatile-rich clasts and carbonaceous chondrites , 2018, Geochimica et Cosmochimica Acta.

[33]  A. Bischoff,et al.  Shock stage distribution of 2280 ordinary chondrites—Can bulk chondrites with a shock stage of S6 exist as individual rocks? , 2018, Meteoritics & Planetary Science.

[34]  N. Braukmüller,et al.  The chemical composition of carbonaceous chondrites: Implications for volatile element depletion, complementarity and alteration , 2018, Geochimica et Cosmochimica Acta.

[35]  R. Wieler,et al.  Brecciation among 2280 ordinary chondrites – Constraints on the evolution of their parent bodies , 2018, Geochimica et Cosmochimica Acta.

[36]  A. Maturilli,et al.  What is controlling the reflectance spectra (0.35–150 µm) of hydrated (and dehydrated) carbonaceous chondrites? , 2018, Icarus.

[37]  A. Brearley,et al.  Primary iron sulfides in CM and CR carbonaceous chondrites: Insights into nebular processes , 2018 .

[38]  M. Patzek,et al.  Mineralogy of volatile‐rich clasts in brecciated meteorites , 2018, Meteoritics & Planetary Science.

[39]  N. Kita,et al.  Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship. , 2018, Geochimica et cosmochimica acta.

[40]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[41]  A. Bischoff,et al.  Chemical variations of sulfides and metal in enstatite chondrites—Introduction of a new classification scheme , 2018 .

[42]  C. Wöhler,et al.  A Mid-Infrared Reflectance Database in Preparation for Space Missions , 2018 .

[43]  T. Kleine,et al.  Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26 Al in the solar nebula , 2018 .

[44]  F. Moynier,et al.  Chromium isotopic homogeneity between the Moon, the Earth, and enstatite chondrites , 2017, 1712.02627.

[45]  J. Borovička,et al.  Atmospheric trajectory and heliocentric orbit of the Ejby meteorite fall in Denmark on February 6, 2016 , 2017 .

[46]  A. Bischoff,et al.  Breccia Classification of CM Chondrites , 2017 .

[47]  P. Bland,et al.  Giant convecting mud balls of the early solar system , 2017, Science Advances.

[48]  S. Russell,et al.  Type 1 aqueous alteration in CM carbonaceous chondrites: Implications for the evolution of water‐rich asteroids , 2017 .

[49]  P. Spurný,et al.  The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field , 2017 .

[50]  T. Kleine,et al.  Mixing and Transport of Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among Chondrules , 2017, 1705.03676.

[51]  P. Heck,et al.  In search of the Earth‐forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites , 2017 .

[52]  M. Lane,et al.  Petrogenesis and Provenance of Ungrouped Achondrite Northwest Africa 7325 from Petrology, Trace Elements, Oxygen, Chromium and Titanium Isotopes, and Mid-IR Spectroscopy. , 2017, Geochimica et cosmochimica acta.

[53]  M. Caffee,et al.  The Braunschweig meteorite − a recent L6 chondrite fall in Germany , 2017 .

[54]  M. Zolensky,et al.  The Relationship Between Cosmic-Ray Exposure Ages And Mixing Of CM Chondrite Lithologies , 2017 .

[55]  V. Heber,et al.  Matrix effects on the relative sensitivity factors for manganese and chromium during ion microprobe analysis of carbonate: Implications for early Solar System chronology , 2017 .

[56]  K. Nagashima,et al.  53Mn–53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration , 2017 .

[57]  L. Borg,et al.  A renewed search for short-lived 126Sn in the early Solar System: Hydride generation MC-ICPMS for high sensitivity Te isotopic analysis , 2017 .

[58]  R. Carlson,et al.  The accretion and impact history of the ordinary chondrite parent bodies , 2017 .

[59]  H. Haack,et al.  Previously unknown class of metalorganic compounds revealed in meteorites , 2017, Proceedings of the National Academy of Sciences.

[60]  A. Gurenko,et al.  Oxygen isotope constraints on the alteration temperatures of CM chondrites , 2017 .

[61]  M. Schodlok,et al.  Characterisation of carbonate minerals from hyperspectral TIR scanning using features at 14 000 and 11 300 nm , 2016 .

[62]  A. Davis,et al.  A link between oxygen, calcium and titanium isotopes in 26 Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula , 2016 .

[63]  J. Borovička,et al.  Two Very Precisely Instrumentally Documented Meteorite Falls: Zdar nad Sazavou and Stubenberg - Prediction and Reality , 2016 .

[64]  E. Shock,et al.  A calibration of the triple oxygen isotope fractionation in the SiO2–H2O system and applications to natural samples , 2016 .

[65]  E. Nakamura,et al.  The oxygen isotope composition of San Carlos olivine on the VSMOW2-SLAP2 scale. , 2016, Rapid communications in mass spectrometry : RCM.

[66]  P. Schmitt‐Kopplin,et al.  Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section. , 2016, Environmental science & technology.

[67]  M. Zolensky,et al.  Mineralogy of iron sulfides in CM1 and CI1 lithologies of the Kaidun breccia: Records of extreme to intense hydrothermal alteration , 2016 .

[68]  A. Yamaguchi,et al.  Evidence from Tm anomalies for non-CI refractory lithophile element proportions in terrestrial planets and achondrites , 2016 .

[69]  S. Akhmadaliev,et al.  The first four years of the AMS-facility DREAMS: Status and developments for more accurate radionuclide data , 2016 .

[70]  Y. Guan,et al.  Episodic carbonate precipitation in the CM chondrite ALH 84049: An ion microprobe analysis of O and C isotopes , 2016 .

[71]  L. K. Fifield,et al.  Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe , 2016, Nature.

[72]  T. Spohn,et al.  Modelling the internal structure of Ceres: Coupling of accretion with compaction by creep and implications for the water-rock differentiation , 2015 .

[73]  M. Zolensky,et al.  CM Carbonaceous Chondrite Lithologies and Their Space Exposure Ages , 2015 .

[74]  K. Howard,et al.  Modal mineralogy of CI and CI-like chondrites by X-ray diffraction , 2015 .

[75]  P. Schmitt‐Kopplin,et al.  Nontarget analysis of Murchison soluble organic matter by high‐field NMR spectroscopy and FTICR mass spectrometry , 2015, Magnetic resonance in chemistry : MRC.

[76]  P. Spurný Instrumentally documented meteorite falls: two recent cases and statistics from all falls , 2015, Proceedings of the International Astronomical Union.

[77]  A. Yamaguchi,et al.  Early stages of core segregation recorded by Fe isotopes in an asteroidal mantle , 2015 .

[78]  T. Ireland,et al.  Mn–Cr dating of Fe- and Ca-rich olivine from ‘quenched’ and ‘plutonic’ angrite meteorites using Secondary Ion Mass Spectrometry , 2015 .

[79]  P. Povinec,et al.  Cosmogenic nuclides in the Košice meteorite: Experimental investigations and Monte Carlo simulations , 2015 .

[80]  A. Galy,et al.  Mn–Cr systematics in primitive meteorites: Insights from mineral separation and partial dissolution , 2015 .

[81]  Q. Yin,et al.  Differentiated Planetesimals with Chondritic Crusts: New ∆17O-∊54Cr Evidence in Unique, Ungrouped Achondrites for Partial Melting of the CV/CK and CO Parent Bodies , 2015 .

[82]  L. K. Fifield,et al.  Settling the half-life of 60Fe: fundamental for a versatile astrophysical chronometer. , 2015, Physical review letters.

[83]  K. A. Dyl,et al.  Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments , 2015 .

[84]  B. Weiss,et al.  An early solar system magnetic field recorded in CM chondrites , 2015 .

[85]  P. Schmitt‐Kopplin,et al.  Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS , 2014 .

[86]  Martin R. Lee,et al.  Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration , 2014 .

[87]  Huifang Xu,et al.  Si-magnetite nano-precipitates in silician magnetite from banded iron formation: Z-contrast imaging and ab initio study , 2014 .

[88]  Huanting Hu,et al.  Triple oxygen isotopes in biogenic and sedimentary carbonates , 2014 .

[89]  M. Humayun,et al.  Clues to the origin of metal in Almahata Sitta EL and EH chondrites and implications for primitive E chondrite thermal histories , 2014 .

[90]  K. Nishiizumi,et al.  Cosmic‐ray exposure ages of six chondritic Almahata Sitta fragments , 2014 .

[91]  P. Schmitt‐Kopplin,et al.  Water droplets in oil are microhabitats for microbial life , 2014, Science.

[92]  B. Schmitt,et al.  The abundance and stability of “water” in type 1 and 2 carbonaceous chondrites (CI, CM and CR) , 2014 .

[93]  M. Bizzarro,et al.  Precise measurement of chromium isotopes by MC-ICPMS. , 2014, Journal of Analytical Atomic Spectrometry.

[94]  M. Millet,et al.  Ultra-precise titanium stable isotope measurements by double-spike high resolution MC-ICP-MS , 2014 .

[95]  A. Bischoff,et al.  The Almahata Sitta polymict breccia and the late accretion of asteroid 2008 TC3 , 2014 .

[96]  T. Hiroi,et al.  MULTIPLE AND FAST: THE ACCRETION OF ORDINARY CHONDRITE PARENT BODIES , 2014, 1405.6850.

[97]  W. Brand,et al.  Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report) , 2014 .

[98]  A. Pack,et al.  The triple oxygen isotope composition of the Earth mantle and understanding ΔO17 variations in terrestrial rocks and minerals , 2014 .

[99]  C. Vollmer,et al.  Tracking Aqueous Alteration of CM Chondrites —- Insights from In Situ Oxygen Isotope Measurements of Calcite , 2014 .

[100]  M. Zolensky,et al.  Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites , 2014 .

[101]  D. O'Brien,et al.  Asteroid 2008 TC3 and the Fall of Almahata Sitta, a Unique Meteorite Breccia , 2014 .

[102]  R. Bowden,et al.  The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions , 2013 .

[103]  Peter S. Gural,et al.  Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization , 2013, Science.

[104]  I. Franchi,et al.  The oxygen isotope evolution of parent body aqueous solutions as recorded by multiple carbonate generations in the Lonewolf Nunataks 94101 CM2 carbonaceous chondrite , 2013 .

[105]  A. Bouvier,et al.  Al-Mg Systematics in a CAI from the NWA 6991 CV3 Chondrite , 2013 .

[106]  T. Spohn,et al.  Modelling of compaction in planetesimals , 2013 .

[107]  M. Zolensky,et al.  Clasts in the CM2 carbonaceous chondrite Lonewolf Nunataks 94101: Evidence for aqueous alteration prior to complex mixing , 2013 .

[108]  F. Langenhorst,et al.  The nanoscale mineralogy of Fe,Ni sulfides in pristine and metamorphosed CM and CM/CI‐like chondrites: Tapping a petrogenetic record , 2013 .

[109]  B. Michalke,et al.  High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter , 2013 .

[110]  R. Bowden,et al.  Carbonate abundances and isotopic compositions in chondrites , 2013 .

[111]  G. Libourel,et al.  Aqueous alteration in CR chondrites: Meteorite parent body processes as analogue for long-term corrosion processes relevant for nuclear waste disposal , 2013 .

[112]  B. Schmitz,et al.  Large spinel grains in a CM chondrite (Acfer 331): Implications for reconstructions of ancient meteorite fluxes , 2013 .

[113]  Y. Sano,et al.  Mn–Cr ages of dolomites in CI chondrites and the Tagish Lake ungrouped carbonaceous chondrite , 2013 .

[114]  N. Dauphas,et al.  Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk , 2012, 1212.1490.

[115]  M. Bizzarro,et al.  The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk , 2012, Science.

[116]  Paul F. McMillan,et al.  New insights into the structure and chemistry of Titan's tholins via13C and 15N solid state nuclear magnetic resonance spectroscopy , 2012 .

[117]  B. Reynard,et al.  Creep of phyllosilicates at the onset of plate tectonics , 2012 .

[118]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[119]  M. Wadhwa,et al.  Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System , 2012, Proceedings of the National Academy of Sciences.

[120]  F. Moynier,et al.  Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes , 2012 .

[121]  Andrew M. Davis,et al.  The proto-Earth as a significant source of lunar material , 2012 .

[122]  L. Leshin,et al.  An oxygen isotope dichotomy in CM2 chondritic carbonates—A SIMS approach , 2012 .

[123]  Y. Sano,et al.  Evidence for the late formation of hydrous asteroids from young meteoritic carbonates , 2012, Nature Communications.

[124]  A. Davis,et al.  A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites , 2011 .

[125]  A. Bouvier,et al.  Absolute Chronology of the First Solids in the Solar System , 2011 .

[126]  M. Gounelle,et al.  THE CHROMIUM ISOTOPIC COMPOSITION OF THE UNGROUPED CARBONACEOUS CHONDRITE TAGISH LAKE , 2011 .

[127]  M. Bizzarro,et al.  EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK , 2011 .

[128]  J. Aponte,et al.  Effects of secondary alteration on the composition of free and IOM-derived monocarboxylic acids in carbonaceous chondrites , 2011 .

[129]  F. Langenhorst,et al.  Translation interface modulation in NC-pyrrhotites: Direct imaging by TEM and a model toward understanding partially disordered structural states , 2011 .

[130]  L. Y. Tseng,et al.  Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry. , 2011, Water research.

[131]  Daniel P. Glavin,et al.  The effects of parent body processes on amino acids in carbonaceous chondrites , 2010 .

[132]  T. Iizuka,et al.  U-Pb chronology of the Solar System's oldest solids with variable 238 U/ 235 U , 2010 .

[133]  S. Maruyama,et al.  53Mn–53Cr CHRONOMETRY OF CB CHONDRITE: EVIDENCE FOR UNIFORM DISTRIBUTION OF 53Mn IN THE EARLY SOLAR SYSTEM , 2010 .

[134]  M. Laubenstein,et al.  Asteroid 2008 TC3—Almahata Sitta: A spectacular breccia containing many different ureilitic and chondritic lithologies , 2010 .

[135]  A. Makishima,et al.  CHROMIUM ISOTOPE SYSTEMATICS OF ACHONDRITES: CHRONOLOGY AND ISOTOPIC HETEROGENEITY OF THE INNER SOLAR SYSTEM BODIES , 2010 .

[136]  L. Bonal,et al.  Chondritic lithic clasts in the CB/CH-like meteorite Isheyevo: Fragments of previously unsampled parent bodies , 2010 .

[137]  B. Schmitt,et al.  Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids , 2010 .

[138]  Gerhard Eckel,et al.  High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall , 2010, Proceedings of the National Academy of Sciences.

[139]  R. Carlson,et al.  Contributors to chromium isotope variation of meteorites , 2010 .

[140]  G. Dollinger,et al.  A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting , 2010 .

[141]  A. Makishima,et al.  Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry. , 2009, Analytical chemistry.

[142]  P. Bland,et al.  Modal mineralogy of CM2 chondrites by X-ray diffraction (PSD-XRD). Part 1: Total phyllosilicate abundance and the degree of aqueous alteration , 2009 .

[143]  J. Masarik,et al.  Cosmogenic nuclides in stony meteorites revisited , 2009 .

[144]  M. Laubenstein,et al.  A new low-level gamma-ray spectrometry system for environmental radioactivity at the underground laboratory Felsenkeller. , 2009, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[145]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[146]  J. Birck,et al.  High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry , 2008 .

[147]  C. Göpel,et al.  53Mn–53Cr systematics of the early Solar System revisited , 2008 .

[148]  R. Clayton,et al.  Geochemistry, petrology and ages of the lunar meteorites Kalahari 008 and 009: New constraints on early lunar evolution , 2008 .

[149]  J. Clerc,et al.  Magnetic classification of stony meteorites: 2. Non‐ordinary chondrites , 2008 .

[150]  B. Reynard,et al.  High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction , 2007, Science.

[151]  J. Eiler,et al.  Temperatures of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites , 2007 .

[152]  E. M. Perdue,et al.  High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems , 2007, Analytical and bioanalytical chemistry.

[153]  M. Weisberg,et al.  The GRO 95577 CR1 chondrite and hydration of the CR parent body , 2007 .

[154]  George D. Cody,et al.  The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter , 2007 .

[155]  K. Mezger,et al.  Late accretion and lithification of chondritic parent bodies: Mg isotope studies on fragments from primitive chondrites and chondritic breccias , 2007 .

[156]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[157]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[158]  P. Ehrenfreund,et al.  Amino acids in Antarctic CM1 meteorites and their relationship to other carbonaceous chondrites , 2007 .

[159]  C. Floss,et al.  Brecciation and chemical heterogeneities of CI chondrites , 2006 .

[160]  A. Shukolyukov,et al.  Manganese–chromium isotope systematics of carbonaceous chondrites , 2006 .

[161]  P. Rochette,et al.  In situ identification, pairing, and classification of meteorites from Antarctica through magnetic susceptibility measurements , 2006 .

[162]  F. Wlotzka,et al.  Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6 , 2005 .

[163]  I. Bertini,et al.  NMR Spectroscopy of Paramagnetic Metalloproteins , 2005, Chembiochem : a European journal of chemical biology.

[164]  M. Zolensky,et al.  Hydrogen isotopic composition of water from fossil micrometeorites in howardites , 2005 .

[165]  Pierre Rochette,et al.  Toward a robust normalized magnetic paleointensity method applied to meteorites , 2004 .

[166]  P. Buseck,et al.  Nanometer-scale measurements of Fe3+/ΣFe by electron energy-loss spectroscopy: A cautionary note , 2004 .

[167]  A. Pelton,et al.  Critical thermodynamic assessment and modeling of the Fe-Ni-S system , 2004 .

[168]  J. Eiler,et al.  Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites 1 1 Associate , 2004 .

[169]  M. Rehkämper,et al.  Application of MC-ICPMS to the precise determination of tellurium isotope compositions in chondrites, iron meteorites and sulfides , 2004 .

[170]  V. Alexeev Meteorite Ablation Evaluated from Data on the Distribution of Cosmogenic Neon Isotopes , 2003 .

[171]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[172]  Michael E. Zolensky,et al.  Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite , 2002 .

[173]  Ian A. Franchi,et al.  Light dement geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites , 2002 .

[174]  F. Senftle,et al.  Magnetic study of magnetite in the Tagish Lake meteorite , 2002 .

[175]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[176]  T. Yamanaka,et al.  Magnetic properties of the Fe2SiO4-Fe3O4 spinel solid solutions , 2001 .

[177]  R. Wieler,et al.  Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed‐system stepped etching , 2000 .

[178]  L. Schultz,et al.  Noble gas record, collisional history, and pairing of CV, CO, CK, and other carbonaceous chondrites , 2000 .

[179]  T. Faestermann,et al.  Accelerator mass spectrometry measurements and model calculations of iron‐60 production rates in meteorites , 1999 .

[180]  K. Keil,et al.  Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .

[181]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[182]  S. Merchel,et al.  An Update on Radiochemical Separation Techniques for the Determination of Long-Lived Radionuclides via Accelerator Mass Spectrometry , 1999 .

[183]  M. Grady Meteorites: Flux With Time and Impact Effects , 1998 .

[184]  A. Bischoff,et al.  Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review , 1998 .

[185]  B. Gleisberg,et al.  Low-level counting techniques in the underground laboratory “Felsenkeller” in Dresden , 1998 .

[186]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[187]  M. Zolensky,et al.  The Kaidun meteorite: Mineralogy of an unusual CM1 lithology , 1996 .

[188]  C. Tuniz,et al.  Exposure history of the Torino meteorite , 1996 .

[189]  E. Anders,et al.  INTERSTELLAR GRAINS IN METEORITES : III. GRAPHITE AND ITS NOBLE GASES , 1995 .

[190]  R. Clayton,et al.  Oxygen isotopes in separated components of CI and CM meteorites , 1994 .

[191]  G. Huss,et al.  Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins , 1994 .

[192]  M. Zolensky,et al.  CM chondrites exhibit the complete petrologic range from type 2 to 1. [Abstract only] , 1994 .

[193]  A. Rubin,et al.  THE COMPOSITIONAL CLASSIFICATION OF CHONDRITES. VI: THE CR CARBONACEOUS CHONDRITE GROUP , 1994 .

[194]  A. Bischoff,et al.  Mineralogy, Degree of Brecciation, and Aqueous Alteration of CI Chondrites Orgueil, Ivuna, and Alais , 1993 .

[195]  C. Johnson,et al.  Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration , 1993 .

[196]  R. Clayton,et al.  The CR (Renazzo-type) carbonaceous chondrite group and its implications , 1993 .

[197]  A. Bischoff,et al.  Shock metamorphism as a fundamental process in the evolution of planetary bodies; information from meteorites , 1992 .

[198]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[199]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[200]  John W. Salisbury,et al.  Midinfrared (2.5–13.5 μm) reflectance spectra of powdered stony meteorites , 1991 .

[201]  C. Johnson,et al.  Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites: Implications for thermal histories and group differences , 1991 .

[202]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[203]  H. McSween,et al.  Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .

[204]  M. Zolensky,et al.  Aqueous alteration on the hydrous asteroids - Results of EQ3/6 computer simulations , 1989 .

[205]  C. Pillinger,et al.  The carbon and oxygen isotopic composition of meteoritic carbonates , 1988 .

[206]  R. Clayton,et al.  A planetary, H-group pebble in the Barwell, L6, unshocked chondritic meteorite , 1988 .

[207]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[208]  J. Kerridge,et al.  Carbonates and sulfates in CI chondrites: formation by aqueous activity on the parent body. , 1988, Meteoritics.

[209]  R. Clayton,et al.  Oxygen isotopic compositions of several Antarctic meteorites , 1987 .

[210]  A. Rubin,et al.  Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules , 1986 .

[211]  J. Kerridge Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.

[212]  S. Epstein,et al.  Relic interstellar grains in Murchison meteorite , 1984, Nature.

[213]  M. Zolensky,et al.  Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites , 1984, Nature.

[214]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[215]  S. Epstein,et al.  Interstellar organic matter in meteorites , 1983 .

[216]  R. Kavanagh,et al.  Half-life of 26Al , 1983 .

[217]  G. Wasserburg,et al.  The isotopic composition of titanium in the Allende and Leoville meteorites , 1981 .

[218]  H. Zook A new impact model for the generation of ordinary chondrites , 1980 .

[219]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[220]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[221]  D. Revelle A quasi-simple ablation model for large meteorite entry: theory vs observations , 1979 .

[222]  C. Goetze,et al.  Creep of olivine during hot-pressing , 1978 .

[223]  R. Clayton,et al.  A classification of meteorites based on oxygen isotopes , 1976 .

[224]  G. Arrhenius,et al.  The paleomagnetic record in carbonaceous chondrites: Natural remanence and magnetic properties , 1974 .

[225]  H. Urey Primary and secondary objects , 1959 .

[226]  D. Krietsch Alteration on asteroids, diversity of primordial volatiles and their carriers in carbonaceous chondrites, and martian shergottite sampling sites - studied by meteoritic noble gases , 2020 .

[227]  M. Anand,et al.  TWO RECENT CM FALLS: NEW EVIDENCE FOR A LITHOLOGICALLY AND ISOTOPICALLY HETEROGENEOUS CM PARENT BODY , 2020 .

[228]  A. Pack,et al.  CHARACTERISTICS OF A NEW CARBONACEOUS, METAL-RICH LITHOLOGY FOUND IN THE CARBONACEOUS CHONDRITE BRECCIA AGUAS , 2020 .

[229]  Dorothea,et al.  Production and characterization of 60 Fe standards for accelerator mass spectrometry , 2019 .

[230]  I. Franchi,et al.  OXYGEN ISOTOPE EVIDENCE FOR MULTIPLE CM PARENT BODIES : WHAT WILL WE LEARN FROM THE HAYABUSA 2 AND OSIRIS-REx SAMPLE RETURN MISSIONS ? , 2019 .

[231]  A. Pack,et al.  O-ISOTOPE COMPOSITION OF CI- AND CM-LIKE CLASTS IN UREILITES, HEDS, AND CR CHONDRITES , 2018 .

[232]  F. Ciesla,et al.  Sources of Water and Aqueous Activity on the Chondrite Parent Asteroids , 2015 .

[233]  H. Leroux,et al.  The Paris meteorite, the least altered CM chondrite so far , 2014 .

[234]  S. Akhmadaliev,et al.  The new 6 MV AMS-facility DREAMS at Dresden , 2013 .

[235]  Z. Gabelica,et al.  Chemical footprint of the solvent soluble extraterrestrial organic matter occluded in Soltmany ordinary chondrite. , 2012 .

[236]  G. J. Consolmagnoa,et al.  The significance of meteorite density and porosity , 2010 .

[237]  C.,et al.  Mn/Cr systematics: A tool to discriminate the origin of primitive meteorites? , 2010 .

[238]  W. Bach,et al.  Fe–Ni–Co–O–S Phase Relations in Peridotite–Seawater Interactions , 2009 .

[239]  R. Clayton Oxygen Isotopes in the Early Solar System — A Historical Perspective , 2008 .

[240]  J. Beck,et al.  Accelerator mass spectrometry of long-lived light radionuclides , 2008 .

[241]  Adrian J. Brearley,et al.  The Action of Water , 2006 .

[242]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[243]  E. Scott,et al.  Nature and Origins of Meteoritic Breccias , 2006 .

[244]  M. Zolensky,et al.  The Kaidun Microbreccia Meteorite: A Harvest from the Inner and Outer Asteroid Belt , 2003 .

[245]  D. Hampshire,et al.  Self-shielding in the solar nebula , 2002 .

[246]  R. Wieler Cosmic-Ray-Produced Noble Gases in Meteorites , 2002 .

[247]  A. Jull,et al.  14C terrestrial ages of meteorites from Victoria Land, Antarctica, and the infall rates of meteorites , 1998, Geological Society, London, Special Publications.

[248]  F. Finocchi,et al.  Chemical reactions in protoplanetary accretion disks III. The role of ionisation processes , 1997 .

[249]  R. Hutchison Chondrules and their associates in ordinary chondrites: a planetary connection? , 1996 .

[250]  I. Sanders A chondrule-forming scenario involving molten planetesimals. , 1996 .

[251]  A. Bischoff,et al.  Constraints on chondrule agglomeration from fine-grained chondrule rims , 1994 .

[252]  R. Clayton,et al.  Origin of dark clasts in the Acfer 059/El Djouf 001 CR2 chondrite , 1994 .

[253]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[254]  H. R. Andrews,et al.  14C content of ten meteorites measured by tandem accelerator mass spectrometry , 1984 .

[255]  F. Robert,et al.  The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites☆ , 1982 .

[256]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[257]  N. Morimoto,et al.  Pyrrhotite Phase Relations below 320°C , 1970 .

[258]  H. Urey Parent bodies of the meteorites and the origin of chondrules , 1967 .