Interactive autodidactic school: A new metaheuristic optimization algorithm for solving mathematical and structural design optimization problems

Abstract A new efficient and robust metaheuristic algorithm called “Interactive Autodidactic School (IAS)” is proposed in this paper to solve numerical optimization and structural design optimization problems. IAS is a population-based algorithm on the basis of the interactions between students in an autodidactic school with the goal of increasing their knowledge through a combination of self-teaching/self-learning, interactive discussion, criticism, and the competition. IAS is tested in twenty mathematical optimization and seven structural optimization problems. Subsequently, its optimum solution is compared with other well-known optimization algorithms. The obtained results confirmed that the proposed IAS algorithm gives best optimal solution and has excellent performance compared with other optimization methods.

[1]  Min-Yuan Cheng,et al.  Hybrid Artificial Intelligence–Based PBA for Benchmark Functions and Facility Layout Design Optimization , 2012 .

[2]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[3]  Kevin E Lansey,et al.  Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm , 2003 .

[4]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[5]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[6]  Hussain Shareef,et al.  Lightning search algorithm , 2015, Appl. Soft Comput..

[7]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[8]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[9]  Mohsen Rashki,et al.  Flying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems , 2019 .

[10]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[11]  Hae Chang Gea,et al.  STRUCTURAL OPTIMIZATION USING A NEW LOCAL APPROXIMATION METHOD , 1996 .

[12]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[13]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[14]  Piotr Kacejko,et al.  A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG) , 2019, Engineering Optimization.

[15]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[16]  Alireza Askarzadeh,et al.  A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm , 2016 .

[17]  S. O. Degertekin,et al.  Sizing truss structures using teaching-learning-based optimization , 2013 .

[18]  Slawomir Koziel,et al.  Computational Optimization, Methods and Algorithms , 2016, Computational Optimization, Methods and Algorithms.

[19]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[20]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[21]  Debasish Ghose,et al.  Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications , 2006, Multiagent Grid Syst..

[22]  S. Wu,et al.  Steady-state genetic algorithms for discrete optimization of trusses , 1995 .

[23]  Siamak Talatahari,et al.  A particle swarm ant colony optimization for truss structures with discrete variables , 2009 .

[24]  Ali Kaveh,et al.  Water Evaporation Optimization , 2016 .

[25]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[26]  Z. Beheshti A review of population-based meta-heuristic algorithm , 2013, SOCO 2013.

[27]  Timon Rabczuk,et al.  A level-set based IGA formulation for topology optimization of flexoelectric materials , 2017 .

[28]  Amandeep Kaur,et al.  STOA: A bio-inspired based optimization algorithm for industrial engineering problems , 2019, Eng. Appl. Artif. Intell..

[29]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[30]  Arshad Ahmad,et al.  A new optimization method: Electro-Search algorithm , 2017, Comput. Chem. Eng..

[31]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[32]  Luciano Lamberti,et al.  An efficient simulated annealing algorithm for design optimization of truss structures , 2008 .

[33]  Ali Kaveh,et al.  A new metaheuristic for continuous structural optimization: water evaporation optimization , 2016 .

[34]  Timon Rabczuk,et al.  A multi-material level set-based topology optimization of flexoelectric composites , 2018, 1901.10752.

[35]  R. Rao Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems , 2016 .

[36]  Min-Yuan Cheng,et al.  Symbiotic Organisms Search: A new metaheuristic optimization algorithm , 2014 .

[37]  Satvir Singh,et al.  Butterfly optimization algorithm: a novel approach for global optimization , 2018, Soft Computing.

[38]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[39]  Ali Kaveh,et al.  Ray optimization for size and shape optimization of truss structures , 2013 .

[40]  S. O. Degertekin,et al.  Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm , 2019, Appl. Soft Comput..

[41]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[42]  Mustafa Sonmez,et al.  Artificial Bee Colony algorithm for optimization of truss structures , 2011, Appl. Soft Comput..

[43]  P. Venkataraman,et al.  Applied Optimization with MATLAB Programming , 2001 .

[44]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[45]  Fariborz Jolai,et al.  Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm , 2016, J. Comput. Des. Eng..

[46]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[47]  S. O. Degertekin Improved harmony search algorithms for sizing optimization of truss structures , 2012 .

[48]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[49]  K. Lee,et al.  The harmony search heuristic algorithm for discrete structural optimization , 2005 .

[50]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[51]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[52]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[53]  A. Kaveh,et al.  A new optimization method: Dolphin echolocation , 2013, Adv. Eng. Softw..

[54]  C. J. Shih,et al.  Generalized Hopfield network based structural optimization using sequential unconstrained minimization technique with additional penalty strategy , 2002 .

[55]  Andrew Lewis,et al.  Grasshopper Optimisation Algorithm: Theory and application , 2017, Adv. Eng. Softw..

[56]  T. Bakhshpoori,et al.  An efficient hybrid Particle Swarm and Swallow Swarm Optimization algorithm , 2014 .

[57]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[58]  Ayhan Nuhoglu,et al.  Interactive search algorithm: A new hybrid metaheuristic optimization algorithm , 2018, Eng. Appl. Artif. Intell..

[59]  Ashraf Darwish,et al.  A new chaotic multi-verse optimization algorithm for solving engineering optimization problems , 2018, J. Exp. Theor. Artif. Intell..

[60]  Ardeshir Bahreininejad,et al.  Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems , 2013, Appl. Soft Comput..

[61]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[62]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[63]  Xin-She Yang,et al.  Sizing optimization of truss structures using flower pollination algorithm , 2015, Appl. Soft Comput..

[64]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[65]  Yan Wang,et al.  Artificial Flora (AF) Optimization Algorithm , 2018 .

[66]  Vimal Savsani,et al.  Passing vehicle search (PVS): A novel metaheuristic algorithm , 2016 .

[67]  Ardeshir Bahreininejad,et al.  Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems , 2012 .

[68]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[69]  Feng Liu,et al.  A heuristic particle swarm optimization method for truss structures with discrete variables , 2009 .

[70]  Ali Kaveh,et al.  Lion Pride Optimization Algorithm: A meta-heuristic method for global optimization problems , 2018, Scientia Iranica.

[71]  H. Amir,et al.  Nonlinear Mixed-Discrete Structural Optimization , 1989 .

[72]  H. R. E. H. Bouchekara,et al.  Most Valuable Player Algorithm: a novel optimization algorithm inspired from sport , 2020, Oper. Res..