A Regularized Neural Net Approach for Retrieval of Atmospheric and Surface Temperatures with the Iasi Instrument

Abstract In this paper, a fast atmospheric and surface temperature retrieval algorithm is developed for the high-resolution Infrared Atmospheric Sounding Interferometer (IASI) spaceborne instrument. This algorithm is constructed on the basis of a neural network technique that has been regularized by introduction of information about the solution of the problem that is in addition to the information contained in the problem (a priori information). The performance of the resulting fast and accurate inverse radiative transfer model is presented for a large diversified dataset of radiosonde atmospheres that includes rare events. Two configurations are considered: a tropical-airmass specialized scheme and an all-airmasses scheme. The surface temperature for tropical situations yields an rms error of 0.4 K for instantaneous retrievals. Results for atmospheric temperature profile retrievals are close to the specifications of the World Meteorological Organization, namely, 1-K rms error for the instantaneous tempe...

[1]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[2]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[3]  C. Rodgers Characterization and Error Analysis of Profiles Retrieved From Remote Sounding Measurements , 1990 .

[4]  Eduardo D. Sontag,et al.  Feedback Stabilization Using Two-Hidden-Layer Nets , 1991, 1991 American Control Conference.

[5]  C. Serio,et al.  The impact of random noise on the performance of a new infrared atmospheric sounding interferometer (IASI) configuration , 1997 .

[6]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  William B. Rossow,et al.  Global, Seasonal Surface Variations from Satellite Radiance Measurements , 1989 .

[8]  Frédéric Chevallier,et al.  Use of a neural‐network‐based long‐wave radiative‐transfer scheme in the ECMWF atmospheric model , 2000 .

[9]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[10]  A. Chedin,et al.  The Improved Initialization Inversion Method: A High Resolution Physical Method for Temperature Retrievals from Satellites of the TIROS-N Series. , 1985 .

[11]  Jean-Noël Thépaut,et al.  The information content of clear sky IASI radiances and their potential for numerical weather prediction , 1998 .

[12]  Alexander Linden,et al.  Inversion of neural networks by gradient descent , 1990, Parallel Comput..

[13]  Arun D Kulkarni,et al.  Neural Networks for Pattern Recognition , 1991 .

[14]  Hugo Hidalgo,et al.  Application of constructive learning algorithms to the inverse problem , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  Michael I. Jordan,et al.  Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..

[16]  Filipe Aires Problèmes inverses et réseaux de neurones : application à l'interféromètre haute résolution IASI et à l'analyse de séries temporelles , 1999 .

[17]  A. Chédin,et al.  SSM/T FORWARD MODELLING USING NEURAL NETWORKS , 1996 .

[18]  Florence Rabier,et al.  Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances , 2002 .

[19]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[20]  Alain Chedin,et al.  Réseaux de neurones multi-couches pour la restitution de variables thermodynamiques atmosphériques à l'aide de sondeurs verticaux satellitaires , 1993 .

[21]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[22]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[23]  F. Chéruy,et al.  GLA and LMD Approaches to the Processing of AIRS and IASI Observations , 1993 .

[24]  Alain Chedin,et al.  A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget , 1998 .

[25]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[26]  Filipe Aires,et al.  Joint characterization of vegetation by satellite observations from visible to microwave wavelengths: A sensitivity analysis , 2001 .

[27]  F. Chéruy,et al.  Contribution to the development of radiative transfer models for high spectral resolution observations in the infrared , 1995 .

[28]  Noëlle A. Scott,et al.  The "weight smoothing" regularization of MLP for Jacobian stabilization , 1999, IEEE Trans. Neural Networks.

[29]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[30]  F. Aires,et al.  A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations , 2001 .

[31]  Moustafa T. Chahine,et al.  High spectral resolution infrared remote sensing for earth's weather and climate studies , 1993 .

[32]  A. Chedin,et al.  A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .