Series reversion in Calder\'on's problem

This work derives explicit series reversions for the solution of Calderón’s problem. The governing elliptic partial differential equation is ∇ · (A∇u) = 0 in a bounded Lipschitz domain and with a matrix-valued coefficient. The corresponding forward map sends A to a projected version of a local Neumann-to-Dirichlet operator, allowing for the use of partial boundary data and finitely many measurements. It is first shown that the forward map is analytic, and subsequently reversions of its Taylor series up to specified orders lead to a family of numerical methods for solving the inverse problem with increasing accuracy. The convergence of these methods is shown under conditions that ensure the invertibility of the Fréchet derivative of the forward map. The introduced numerical methods are of the same computational complexity as solving the linearised inverse problem. The analogous results are also presented for the smoothened complete electrode model.

[1]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[2]  Masahiro Yamamoto,et al.  The Calderón problem with partial data in two dimensions , 2010 .

[3]  Henrik Garde,et al.  Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography , 2015, Numerische Mathematik.

[4]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[5]  V. Isakov On uniqueness in the inverse conductivity problem with local data , 2007 .

[6]  Friedrich Sauvigny,et al.  Linear Operators in Hilbert Spaces , 2012 .

[7]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[8]  Adrian Nachman,et al.  Reconstruction in the Calderón Problem with Partial Data , 2009 .

[9]  Nuutti Hyvönen,et al.  Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography , 2020, ArXiv.

[10]  Nuutti Hyvönen,et al.  Smoothened Complete Electrode Model , 2017, SIAM J. Appl. Math..

[11]  C. Kenig,et al.  The Calderón problem with partial data on manifolds and applications , 2012, 1211.1054.

[12]  Pedro Caro,et al.  GLOBAL UNIQUENESS FOR THE CALDERÓN PROBLEM WITH LIPSCHITZ CONDUCTIVITIES , 2014, Forum of Mathematics, Pi.

[13]  Bastian Harrach,et al.  Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes , 2018, Inverse Problems.

[14]  Jérémi Dardé,et al.  Electrodeless electrode model for electrical impedance tomography , 2021, SIAM J. Appl. Math..

[15]  Mikko Salo,et al.  Recent progress in the Calderon problem with partial data , 2013, 1302.4218.

[16]  T. Valent,et al.  Boundary Value Problems of Finite Elasticity , 1988 .

[17]  Nuutti Hyvönen,et al.  On Regularity of the Logarithmic Forward Map of Electrical Impedance Tomography , 2020, SIAM J. Math. Anal..

[18]  A. Siamj.,et al.  COMPLETE ELECTRODE MODEL OF ELECTRICAL IMPEDANCE TOMOGRAPHY : APPROXIMATION PROPERTIES AND CHARACTERIZATION OF INCLUSIONS , 2004 .

[19]  Bastian Harrach An introduction to finite element methods for inverse coefficient problems in elliptic PDEs , 2021, Jahresbericht der Deutschen Mathematiker-Vereinigung.

[20]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[21]  John Sylvester,et al.  An anisotropic inverse boundary value problem , 1990 .

[22]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: convergence by local injectivity , 2008 .

[23]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[24]  Nuutti Hyvönen,et al.  Optimal Depth-Dependent Distinguishability Bounds for Electrical Impedance Tomography in Arbitrary Dimension , 2019, SIAM J. Appl. Math..

[25]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[26]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[27]  Liliana Borcea,et al.  Addendum to 'Electrical impedance tomography' , 2003 .

[28]  Janne P. Tamminen,et al.  Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps , 2017, 1702.07531.

[29]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[30]  S. Arridge,et al.  Inverse Born series for the Calderon problem , 2012 .

[31]  M. D. Hoop,et al.  Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities , 2016, 1604.02948.

[32]  G. Uhlmann,et al.  The Neumann-to-Dirichlet map in two dimensions , 2012, 1210.1255.

[33]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[34]  G. Uhlmann,et al.  On the linearized local Calderon problem , 2009, 0905.0530.

[35]  Matteo Santacesaria,et al.  Infinite dimensional compressed sensing from anisotropic measurements and applications to inverse problems in PDE , 2017, Applied and Computational Harmonic Analysis.

[36]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[37]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[38]  Nuutti Hyvönen,et al.  Approximating idealized boundary data of electric impedance tomography by electrode measurements , 2009 .

[39]  Matteo Santacesaria,et al.  Calderón's inverse problem with a finite number of measurements II: independent data , 2018, Forum of Mathematics, Sigma.

[40]  Projections onto the subspace of compact operators , 1960 .

[41]  Henrik Garde,et al.  Reconstruction of piecewise constant layered conductivities in electrical impedance tomography , 2019, 1904.07775.

[42]  M. D. Hoop,et al.  EIT in a layered anisotropic medium , 2017, 1712.06138.

[43]  Martin Hanke,et al.  Recent progress in electrical impedance tomography , 2003 .

[44]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[45]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[46]  Bastian von Harrach,et al.  Monotonicity-Based Shape Reconstruction in Electrical Impedance Tomography , 2013, SIAM J. Math. Anal..

[47]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[48]  N. Hyvönen,et al.  Monotonicity-Based Reconstruction of Extreme Inclusions in Electrical Impedance Tomography , 2019, SIAM J. Math. Anal..