Marker-Assisted Breeding as Next-Generation Strategy for Genetic Improvement of Productivity and Quality: Can It Be Realized in Cotton?

The dawdling development in genetic improvement of cotton with conventional breeding program is chiefly due to lack of complete knowledge on and precise manipulation of fiber productivity and quality. Naturally available cotton continues to be a resource for the upcoming breeding program, and contemporary technologies to exploit the available natural variation are outlined in this paper for further improvement of fiber. Particularly emphasis is given to application, obstacles, and perspectives of marker-assisted breeding since it appears to be more promising in manipulating novel genes that are available in the cotton germplasm. Deployment of system quantitative genetics in marker-assisted breeding program would be essential to realize its role in cotton. At the same time, role of genetic engineering and in vitro mutagenesis cannot be ruled out in genetic improvement of cotton.

[1]  M. Giband,et al.  Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population , 2010, BMC Plant Biology.

[2]  Haibao Tang,et al.  A draft physical map of a D-genome cotton species (Gossypium raimondii) , 2010, BMC Genomics.

[3]  J. Jenkins,et al.  Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton , 2010, Euphytica.

[4]  P. Narain Quantitative genetics: past and present , 2010, Molecular Breeding.

[5]  Marilyn L. Warburton,et al.  Molecular marker-assisted breeding options for maize improvement in Asia , 2010, Molecular Breeding.

[6]  Wang Zhiwei,et al.  Construction of molecular genetic map and QTL analysis of fiber quality in cotton. , 2009 .

[7]  J. Lacape,et al.  A new interspecific, Gossypium hirsutum × G. barbadense, RIL population: towards a unified consensus linkage map of tetraploid cotton , 2009, Theoretical and Applied Genetics.

[8]  Jing Zheng,et al.  Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.) , 2009, Molecular Breeding.

[9]  Zhongxu Lin,et al.  A high-density integrative linkage map for Gossypium hirsutum , 2009, Euphytica.

[10]  John Z. Yu,et al.  Gene-rich islands for fiber development in the cotton genome. , 2008, Genomics.

[11]  J. Jenkins,et al.  QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701 , 2008, Euphytica.

[12]  Tianzhen Zhang,et al.  QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. , 2008, Theoretical and Applied Genetics.

[13]  Jinfa F. Zhang,et al.  ATG-anchored AFLP (ATG-AFLP) analysis in cotton , 2008, Plant Cell Reports.

[14]  Zhongxu Lin,et al.  Dissection of genetic variance of fibre quality in advanced generations from an interspecific cross of Gossypium hirsutum and G. barbadense , 2008 .

[15]  D. Mackill,et al.  Marker-assisted selection: an approach for precision plant breeding in the twenty-first century , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  John Z. Yu,et al.  Toward Sequencing Cotton (Gossypium) Genomes , 2007, Plant Physiology.

[17]  F. Krens,et al.  Plant translational genomics: from model species to crops , 2007, Molecular Breeding.

[18]  Xavier Draye,et al.  Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributions of Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development , 2007, Genetics.

[19]  Tianzhen Zhang,et al.  QTL Analysis and Epistasis Effects Dissection of Fiber Qualities in an Elite Cotton Hybrid Grown in Second Generation , 2007 .

[20]  Jing Zheng,et al.  T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance , 2007, Euphytica.

[21]  A. Tyagi,et al.  Emerging trends in the functional genomics of the abiotic stress response in crop plants. , 2007, Plant biotechnology journal.

[22]  Tianzhen Zhang,et al.  A Microsatellite-Based, Gene-Rich Linkage Map Reveals Genome Structure, Function and Evolution in Gossypium , 2007, Genetics.

[23]  Zhongxu Lin,et al.  High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers , 2007 .

[24]  Tianzhen Zhang,et al.  Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton , 2007, Euphytica.

[25]  Ryan A. Rapp,et al.  Spotted cotton oligonucleotide microarrays for gene expression analysis , 2007, BMC Genomics.

[26]  John Z. Yu,et al.  Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum , 2007, Euphytica.

[27]  J. Lacape,et al.  Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs , 2006, Molecular Breeding.

[28]  E. Jamet,et al.  Cell wall proteins: a new insight through proteomics. , 2006, Trends in plant science.

[29]  Tianzhen Zhang,et al.  QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton , 2006, Euphytica.

[30]  J. Jenkins,et al.  Effects of Chromosome-Specific Introgression in Upland Cotton on Fiber and Agronomic Traits , 2006, Genetics.

[31]  John Z. Yu,et al.  Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends , 2006, Molecular Genetics and Genomics.

[32]  Tianzhen Zhang,et al.  QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. , 2006, Yi chuan xue bao = Acta genetica Sinica.

[33]  Tianzhen Zhang,et al.  Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton , 2006, Theoretical and Applied Genetics.

[34]  Hyeran Kim,et al.  Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling , 2005, Molecular Genetics and Genomics.

[35]  John Z. Yu,et al.  Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population , 2005, Molecular Genetics and Genomics.

[36]  Richard Bennett,et al.  Perceptions of the Impacts of Genetically Modified Cotton Varieties: A Case Study of the Cotton Industry in Gujarat, India , 2005 .

[37]  A. Paterson,et al.  Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum , 2005, Theoretical and Applied Genetics.

[38]  C. W. Smith,et al.  Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness , 2005, Theoretical and Applied Genetics.

[39]  Xianbi Li,et al.  Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) , 2005, Euphytica.

[40]  Zhongxu Lin,et al.  Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton , 2005, Euphytica.

[41]  T. Wilkins,et al.  The cotton fiber transcriptome , 2005 .

[42]  C. W. Smith,et al.  Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation , 2005, Theoretical and Applied Genetics.

[43]  K. El-Zik,et al.  Mapping of verticillium wilt resistance genes in cotton , 2005 .

[44]  Zhongxu Lin,et al.  Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD , 2005 .

[45]  D. Stelly,et al.  Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) Joinmap. , 2005, The Journal of heredity.

[46]  E. Pang,et al.  An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts , 2005, Euphytica.

[47]  John Z. Yu,et al.  Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers , 2005, Molecular Breeding.

[48]  R. B. Barwale,et al.  Prospects for Bt Cotton Technology in India , 2004 .

[49]  Zhiguo Han,et al.  Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton , 2004, Molecular Genetics and Genomics.

[50]  E. Hequet,et al.  Inheritance of fiber quality and lint yield in a chemically mutated population of cotton , 2004, Euphytica.

[51]  Trung B. Nguyen,et al.  Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers , 2004, Theoretical and Applied Genetics.

[52]  A. Paterson,et al.  Genetic dissection of cotton physiological responses to arid conditions and their inter‐relationships with productivity , 2004 .

[53]  Vipin K. Rastogi,et al.  A 3347-Locus Genetic Recombination Map of Sequence-Tagged Sites Reveals Features of Genome Organization, Transmission and Evolution of Cotton (Gossypium) , 2004, Genetics.

[54]  Zhongxu Lin,et al.  Construction of a genetic linkage map for cotton based on SRAP , 2003 .

[55]  Trung B. Nguyen,et al.  A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. , 2003, Genome.

[56]  Tianzhen Zhang,et al.  Gene cloning and molecular breeding to improve fiber qualities in cotton , 2003 .

[57]  J. Wichitwechkarn,et al.  Copying and manipulating nature: Innovation for textile materials , 2003 .

[58]  J. Wendel,et al.  Evolution and expression of MYB genes in diploid and polyploid cotton , 2003, Plant Molecular Biology.

[59]  A. Paterson,et al.  QTL analysis of genotype × environment interactions affecting cotton fiber quality , 2003, Theoretical and Applied Genetics.

[60]  Z. W. Shappley,et al.  RFLP genetic linkage maps from four F2.3 populations and a joinmap of Gossypium hirsutum L. , 2002, Theoretical and Applied Genetics.

[61]  Rosalind J Wright,et al.  Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. , 2001, Genome research.

[62]  J. Nap,et al.  Genetical genomics : the added value from segregation , 2001 .

[63]  R. Furbank,et al.  The Control of Single-Celled Cotton Fiber Elongation by Developmentally Reversible Gating of Plasmodesmata and Coordinated Expression of Sucrose and K+ Transporters and Expansin , 2001, Plant Cell.

[64]  David M. Anderson,et al.  Cotton Biotechnology , 2000 .

[65]  Joseph H. Nadeau,et al.  The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs , 2000, Nature Genetics.

[66]  C. W. Smith,et al.  MULTILOCUS INTERACTIONS RESTRICT GENE INTROGRESSION IN INTERSPECIFIC POPULATIONS OF POLYPLOID GOSSYPIUM (COTTON) , 2000, Evolution; international journal of organic evolution.

[67]  G. Mergeai,et al.  Breeding for ”low-gossypol seed and high-gossypol plants” in upland cotton. Analysis of tri-species hybrids and backcross progenies using AFLPs and mapped RFLPs , 1999, Theoretical and Applied Genetics.

[68]  Z. W. Shappley,et al.  An RFLP linkage map of Upland cotton, Gossypium hirsutum L. , 1998, Theoretical and Applied Genetics.

[69]  A. Paterson,et al.  Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. , 1998, Genome research.

[70]  K. El-Zik,et al.  Polyploid formation created unique avenues for response to selection in Gossypium (cotton). , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Sorrells,et al.  Direct classification and selection of superior alleles for crop improvement , 1997 .

[72]  G. Kahl,et al.  Molecular marker technologies for plant improvement , 1995, World journal of microbiology & biotechnology.

[73]  A. Paterson,et al.  A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. , 1994, Genetics.

[74]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[75]  J. Dudley,et al.  Comparing Conventional Early Generation Selection with Molecular Marker Assisted Selection in Maize , 1994 .

[76]  C. W. Wendt,et al.  Drought tolerant sorghum and cotton germplasm , 1983 .

[77]  R. Ravikesavan,et al.  Emerging trends in enhancement of cotton fiber productivity and quality using functional genomics tools. , 2009 .

[78]  Jun Zhu,et al.  Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton , 2008, Euphytica.

[79]  R. Ravikesavan,et al.  Genetic diversity assessment of G. barbadense accessions to widen cotton (Gossypium spp.) gene pool for improved fibre quality. , 2008 .

[80]  Tianzhen Zhang,et al.  QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. , 2007, Journal of genetics and genomics = Yi chuan xue bao.

[81]  Zhongxu Lin,et al.  QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense , 2006, Euphytica.

[82]  Tianzhen Zhang,et al.  Mapping Fiber and Yield QTLs with Main, Epistatic, and QTL × Environment Interaction Effects in Recombinant Inbred Lines of Upland Cotton , 2006 .

[83]  Trung B. Nguyen,et al.  QTL Analysis of Cotton Fiber Quality Using Multiple Gossypium hirsutum × Gossypium barbadense Backcross Generations , 2005 .

[84]  Hee-Jin Kim,et al.  Cotton fiber germin-like protein. I. Molecular cloning and gene expression , 2004, Planta.

[85]  C. W. Smith,et al.  Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium) , 2004, Theoretical and Applied Genetics.

[86]  John Z. Yu,et al.  Molecular mapping and characterization of traits controlling fiber quality in cotton , 2004, Euphytica.

[87]  S. Nair,et al.  Integrating marker-assisted selection in crop breeding: Prospects and challenges , 2004 .

[88]  H. Budak,et al.  Potential Uses of Molecular Markers in Crop Improvement , 2004 .

[89]  John Z. Yu,et al.  Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection , 2002, Theoretical and Applied Genetics.

[90]  J. Wendel,et al.  Comparative development of fiber in wild and cultivated cotton , 2001, Evolution & development.

[91]  K. El-Zik,et al.  MOLECULAR BIOLOGY New Dinucleotide and Trinucleotide Microsatellite Marker Resources for Cotton Genome Research , 2001 .

[92]  M. Ulloa,et al.  Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. , 2000 .

[93]  R. Percy,et al.  QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. , 2000 .

[94]  E. Lander,et al.  Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. , 1989, Genetics.