The protistan origins of animals and fungi.

Recent molecular studies suggest that Opisthokonta, the eukaryotic supergroup including animals and fungi, should be expanded to include a diverse collection of primitively single-celled eukaryotes previously classified as Protozoa. These taxa include corallochytreans, nucleariids, ministeriids, choanoflagellates, and ichthyosporeans. Assignment of many of these taxa to Opisthokonta remains uncorroborated as it is based solely on small subunit ribosomal RNA trees lacking resolution and significant bootstrap support for critical nodes. Therefore, important details of the phylogenetic relationships of these putative opisthokonts with each other and with animals and fungi remain unclear. We have sequenced elongation factor 1-alpha (EF-1alpha), actin, beta-tubulin, and HSP70, and/or alpha-tubulin from representatives of each of the proposed protistan opisthokont lineages, constituting the first protein-coding gene data for some of them. Our results show that members of all opisthokont protist groups encode a approximately 12-amino acid insertion in EF-1alpha, previously found exclusively in animals and fungi. Phylogenetic analyses of combined multigene data sets including a diverse set of opisthokont and nonopisthokont taxa place all of the proposed opisthokont protists unequivocally in an exclusive clade with animals and fungi. Within this clade, the nucleariid appears as the closest sister taxon to fungi, while the corallochytrean and ichthyosporean form a group which, together with the ministeriid and choanoflagellates, form two to three separate sister lineages to animals. These results further establish Opisthokonta as a bona fide taxonomic group and suggest that any further testing of the legitimacy of this taxon should, at the least, include data from opisthokont protists. Our results also underline the critical position of these "animal-fungal allies" with respect to the origin and early evolution of animals and fungi.

[1]  J. W. Valentine,et al.  Defining phyla: evolutionary pathways to metazoan body plans , 2001, Evolution & development.

[2]  Hervé Philippe,et al.  Lack of resolution in the animal phylogeny: closely spaced cladogeneses or undetected systematic errors? , 2007, Molecular biology and evolution.

[3]  T. Cavalier-smith,et al.  The root of the eukaryote tree pinpointed , 2003, Current Biology.

[4]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[5]  C. Bayne,et al.  The symbiont Capsaspora owczarzaki, nov. gen. nov. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoea. , 2002, International journal for parasitology.

[6]  S. Carroll,et al.  A receptor tyrosine kinase from choanoflagellates: Molecular insights into early animal evolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Masami Hasegawa,et al.  Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data. , 2005, Molecular biology and evolution.

[8]  T. Cavalier-smith,et al.  The opalozoan Apusomonas is related to the common ancestor of animals, fungi, and choanoflagellates , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  L. Hyman,et al.  The Invertebrates Vol Ii , 1951 .

[10]  P. Keeling,et al.  On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. , 2005, International journal of systematic and evolutionary microbiology.

[11]  T. A. Brown,et al.  The Aspergillus nidulans mitochondrial genome , 2004, Current Genetics.

[12]  B Franz Lang,et al.  Glass sponges and bilaterian animals share derived mitochondrial genomic features: a common ancestry or parallel evolution? , 2007, Molecular biology and evolution.

[13]  J. Blake,et al.  The hydrodynamics of filter feeding in choanoflagellates , 2002 .

[14]  T. Cavalier-smith What are Fungi , 2001 .

[15]  P. Keeling Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia , 2003 .

[16]  W. Doolittle,et al.  Origin and evolution of the slime molds (Mycetozoa) , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. McArthur,et al.  Ancyromonadida: A New Phylogenetic Lineage Among the Protozoa Closely Related to the Common Ancestor of Metazoans, Fungi, and Choanoflagellates (Opisthokonta) , 2000, Journal of Molecular Evolution.

[18]  A. Simpson,et al.  Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. , 2006, Molecular biology and evolution.

[19]  A. B. Jensen,et al.  Relationships of the insect-pathogenic order Entomophthorales (Zygomycota, Fungi) based on phylogenetic analyses of nuclear small subunit ribosomal DNA sequences (SSU rDNA). , 1998, Fungal genetics and biology : FG & B.

[20]  T. James,et al.  Phylogeny of the Zygomycota based on nuclear ribosomal sequence data. , 2006, Mycologia.

[21]  R. Perry,et al.  Evolution of the transcription unit of ribosomal RNA. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[22]  T. Cavalier-smith,et al.  Phylogenetic Analysis of Eukaryotes Using Heat-Shock Protein Hsp90 , 2003, Journal of Molecular Evolution.

[23]  H. Philippe,et al.  Large-scale sequencing and the new animal phylogeny. , 2006, Trends in ecology & evolution.

[24]  K. D. Arkush,et al.  Pathology Associated with the Rosette Agent, A Systemic Protist Infecting Salmonid Fishes , 1998 .

[25]  A. Roger,et al.  Insights into the Evolutionary Origin and Genome Architecture of the Unicellular Opisthokonts Capsaspora owczarzaki and Sphaeroforma arctica , 2006, The Journal of eukaryotic microbiology.

[26]  B. Leadbeater,et al.  Cell and nuclear division in a freshwater choanoflagellate, Monosiga ovata Kent , 1997 .

[27]  Thomas Ludwig,et al.  RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees , 2005, Bioinform..

[28]  E. Canning,et al.  A triploblast origin for Myxozoa? , 1998, Nature.

[29]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[30]  M. Ragan,et al.  Prototheca richardsi, a pathogen of anuran larvae, is related to a clade of protistan parasites near the animal-fungal divergence. , 1999, Microbiology.

[31]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[32]  B Franz Lang,et al.  The origins of multicellularity: a multi-taxon genome initiative. , 2007, Trends in genetics : TIG.

[33]  H. James-Clark Note on the Infusoria flagellata and the Spongiae ciliatae , 1871, American Journal of Science and Arts.

[34]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.

[35]  Peter M. Letcher,et al.  A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). , 2006, Mycologia.

[36]  P. Keeling,et al.  Re-examining Alveolate Evolution Using Multiple Protein Molecular Phylogenies , 2002, The Journal of eukaryotic microbiology.

[37]  J. Boenigk,et al.  Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: the filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta , 2000 .

[38]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[39]  S. Carroll,et al.  Conflicting phylogenetic signals at the base of the metazoan tree , 2003, Evolution & development.

[40]  M. Chamberlin,et al.  Bacteriophage SP6-specific RNA polymerase. I. Isolation and characterization of the enzyme. , 1982, The Journal of biological chemistry.

[41]  B. Spanggaard,et al.  Phylogenetic relationships of the intercellular fish pathogenIchthyophonus hoferi and fungi, choanoflagellates and the rosette agent , 1996 .

[42]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[43]  S. Feldman,et al.  PHYLOGENETIC CLASSIFICATION OF THE FROG PATHOGEN AMPHIBIOTHECUM (DERMOSPORIDIUM) PENNERI BASED ON SMALL RIBOSOMAL SUBUNIT SEQUENCING , 2005, Journal of wildlife diseases.

[44]  S. Watkinson,et al.  Yeast forms dominate fungal diversity in the deep oceans , 2007, Proceedings of the Royal Society B: Biological Sciences.

[45]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[46]  C. Borchiellini,et al.  Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. , 1998, Molecular biology and evolution.

[47]  B. Leadbeater,et al.  A microscopical study of a marine species of Codosiga James‐Clark (Choanoflagellata) with special reference to the ingestion of bacteria , 1974 .

[48]  P. Keeling Foraminifera and Cercozoa are related in actin phylogeny: two orphans find a home? , 2001, Molecular biology and evolution.

[49]  J. Sugiyama,et al.  Molecular phylogeny of Zygomycota based on EF-1alpha and RPB1 sequences: limitations and utility of alternative markers to rDNA. , 2004, Molecular phylogenetics and evolution.

[50]  D. Bhattacharya,et al.  Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. , 2007, Molecular biology and evolution.

[51]  J Wöstemeyer,et al.  Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1alpha genes. , 2001, Gene.

[52]  B. Degnan,et al.  Mitochondrial diversity of early-branching metazoa is revealed by the complete mt genome of a haplosclerid demosponge. , 2007, Molecular biology and evolution.

[53]  R. F. Bozarth Mycoviruses: a new dimension in microbiology. , 1972, Environmental health perspectives.

[54]  J. Cann The Feeding Behavior and Structure of Nuclearia delicatula (Filosea: Aconchulinida) , 1986 .

[55]  J. Shultz,et al.  Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. , 2004, Molecular phylogenetics and evolution.

[56]  B. Lang,et al.  The Closest Unicellular Relatives of Animals , 2002, Current Biology.

[57]  Xiujuan Wang,et al.  Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. , 2006, Molecular biology and evolution.

[58]  J. Sugiyama,et al.  Evolutionary relationships among basal fungi (Chytridiomycota and Zygomycota): Insights from molecular phylogenetics. , 2005, The Journal of general and applied microbiology.

[59]  T. Cavalier-smith,et al.  Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates , 1996 .

[60]  T. Cavalier-smith,et al.  Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium , 2004 .

[61]  L. Harrell,et al.  A significant new systemic disease of net-pen reared chinook salmon (Oncorhynchus tshawytscha) brood stock , 1986 .

[62]  B F Lang,et al.  Mitochondrial genome evolution and the origin of eukaryotes. , 1999, Annual review of genetics.

[63]  P. Keeling,et al.  Microsporidia: biology and evolution of highly reduced intracellular parasites. , 2002, Annual review of microbiology.

[64]  K. F. Ribichich,et al.  Gene Discovery and Expression Profile Analysis through Sequencing of Expressed Sequence Tags from Different Developmental Stages of the Chytridiomycete Blastocladiella emersonii , 2005, Eukaryotic Cell.

[65]  B. Lang,et al.  A comparison of three fission yeast mitochondrial genomes. , 2003, Nucleic acids research.

[66]  F. C. Page The classification of naked amoebae (Phylum Rhizopoda) , 1987 .

[67]  C. Bayne,et al.  Schistosome sporocyst-killing Amoebae isolated from Biomphalaria glabrata. , 1979, Journal of invertebrate pathology.

[68]  T. Cavalier-smith,et al.  Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae , 1997 .

[69]  David L. Hawksworth,et al.  Ainsworth & Bisby's Dictionary of the Fungi , 1972 .

[70]  J. Palmer,et al.  Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. , 2000, Molecular biology and evolution.

[71]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[72]  M. Powell Fine structure of the unwalled thallus of Rozella polyphagi in its host Polyphagus euglenae , 1984 .

[73]  Yuji Inagaki,et al.  A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1alpha. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  A. Löytynoja,et al.  Molecular phylogenetic analyses of the mitochondrial ADP-ATP carriers: The Plantae/Fungi/Metazoa trichotomy revisited , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  T. Cavalier-smith,et al.  Kingdom protozoa and its 18 phyla. , 1993, Microbiological reviews.

[76]  R. Norris Neustonic Marine Craspedomonadales (Choanofiagellates) from Washington and California , 1965 .

[77]  Sarah J. Bourlat,et al.  Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida , 2006, Nature.

[78]  Debashish Bhattacharya,et al.  The single, ancient origin of chromist plastids , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Chadefaud,et al.  Traité de botanique : systématique , 1960 .

[80]  Kamran Shalchian-Tabrizi,et al.  Phylogenomics Reshuffles the Eukaryotic Supergroups , 2007, PloS one.

[81]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[82]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[83]  G. McFadden,et al.  The secondary endosymbiont of the cryptomonad Guillardia theta contains alpha-, beta-, and gamma-tubulin genes. , 1999, Molecular biology and evolution.

[84]  L. Egyud,et al.  Polarographically active carbohydrates in tissues. , 1973, Currents in modern biology.

[85]  W. Ford Doolittle,et al.  An Updated and Comprehensive rRNA Phylogeny of (Crown) Eukaryotes Based on Rate-Calibrated Evolutionary Distances , 2000, Journal of Molecular Evolution.

[86]  Erin E. Gill,et al.  Assessing the microsporidia-fungi relationship: Combined phylogenetic analysis of eight genes. , 2006, Gene.

[87]  K. Hara,et al.  Enzymatic Approach to Fungal Association with Arthropod Guts: A Case Study for the Crustacean Host, Nihonotrypaea harmandi, and Its Foregut Fungus, Enteromyces callianassae , 2002 .

[88]  P. Holland,et al.  Buddenbrockia Is a Cnidarian Worm , 2007, Science.

[89]  K. Tamura,et al.  Phylogeny of the Drosophila immigrans Species Group (Diptera: Drosophilidae) Based on Adh and Gpdh Sequences , 2007, Zoological science.

[90]  J. V. Van Etten,et al.  Viruses and viruslike particles of eukaryotic algae , 1991, Microbiological reviews.

[91]  W. Mooij,et al.  Detritus-Dependent Development of the Microbial Community in an Experimental System: Qualitative Analysis by Denaturing Gradient Gel Electrophoresis , 1999, Applied and Environmental Microbiology.

[92]  Samson S. Y. Wong,et al.  The mitochondrial genome of the thermal dimorphic fungus Penicillium marneffei is more closely related to those of molds than yeasts , 2003, FEBS letters.

[93]  T. Cavalier-smith,et al.  Neomonada and the origin of animals and fungi. , 1998 .

[94]  B. Lang,et al.  Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms , 2005, Nucleic acids research.

[95]  J. McInerney,et al.  The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. , 2005, Molecular biology and evolution.

[96]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[97]  R. Gutell,et al.  A novel clade of protistan parasites near the animal-fungal divergence. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[99]  石柠 My favorite animal , 2006 .

[100]  R. Lichtwardt,et al.  The Trichomycetes: Fungal Associates of Arthropods , 1986 .

[101]  G. H. Coombs,et al.  Evolutionary relationships among protozoa. , 1998 .

[102]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[103]  I. Fiala,et al.  Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. , 2003, Folia parasitologica.

[104]  Yves Van de Peer,et al.  Evolutionary Relationships Among the Eukaryotic Crown Taxa Taking into Account Site-to-Site Rate Variation in 18S rRNA , 1997, Journal of Molecular Evolution.

[105]  B. Lang,et al.  Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. , 2005, Molecular biology and evolution.

[106]  Joost A. Stalpers,et al.  Ainsworth and Bisby's dictionary of the fungi: 9th edition. , 1995 .

[107]  B. Schierwater My favorite animal, Trichoplax adhaerens. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[108]  D. Patterson The Genus Nuclearia (Sarcodina, Filosea): Species Composition and Characteristics of the Taxa , 1984 .

[109]  M. Manuel,et al.  Sponge paraphyly and the origin of Metazoa , 2001, Journal of evolutionary biology.

[110]  P. Holland,et al.  Orphan worm finds a home: Buddenbrockia is a myxozoan. , 2002, Molecular biology and evolution.

[111]  K. O’Donnell,et al.  Amoebidium parasiticum is a protozoan, not a Trichomycete. , 2000 .

[112]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[113]  H. C. Whisler,et al.  CHEMICAL COMPOSITION OF THE CELL WALL OF AMOEBIDIUM PARASITICUM , 1965 .

[114]  C. Raghukumar,et al.  Molecular evidence of fungal signatures in the marine protist Corallochytrium limacisporum and its implications in the evolution of animals and fungi. , 2006, Protist.

[115]  Timothy Y. James,et al.  Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics , 2000 .

[116]  J. Farris,et al.  Phylogenetic analyses of the fungi based on large rDNA data sets. , 2000 .

[117]  S. Baldauf A Search for the Origins of Animals and Fungi: Comparing and Combining Molecular Data , 1999, The American Naturalist.

[118]  D. Hibberd Observations on the ultrastructure of the choanoflagellate Codosiga botrytis (Ehr.) Saville-Kent with special reference to the flagellar apparatus. , 1975, Journal of cell science.

[119]  M. C. Ordás,et al.  In vitro culture of Perkinsus atlanticus, a parasite of the carpet shell clam Ruditapes decussatus , 1998 .

[120]  M. Martindale,et al.  Molecular evidence for deep evolutionary roots of bilaterality in animal development. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[121]  B. Schierwater,et al.  Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Kenneth M. Halanych,et al.  The New View of Animal Phylogeny , 2004 .

[123]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[124]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[125]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[126]  W. Marasas,et al.  Differentiation of Fusarium subglutinansf. sp. pini by Histone Gene Sequence Data , 1999, Applied and Environmental Microbiology.

[127]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[128]  H. James-Clark XXII.—On theSpongiæ ciliatæasInfusoria flagellata;or observations on the structure, animality, and relationship ofLeucosolenia botryoides,Bowerbank , 1868 .

[129]  S. Carroll,et al.  Evolution of Key Cell Signaling and Adhesion Protein Families Predates Animal Origins , 2003, Science.

[130]  B. Hall,et al.  Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes , 2006, BMC Evolutionary Biology.

[131]  A. Tehler,et al.  A Cladistic Outline of the Eumycota , 1988, Cladistics : the international journal of the Willi Hennig Society.

[132]  J. Farris,et al.  The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling , 2004, Cladistics : the international journal of the Willi Hennig Society.

[133]  David L. Hawksworth,et al.  Ainsworth and Bisby's Dictionary of the fungi. Seventh Edition. , 1997 .

[134]  H. Munro,et al.  Mammalian protein metabolism , 1964 .

[135]  Andrea Ender,et al.  Placozoa – no longer a phylum of one , 2004, Current Biology.

[136]  David L. Hawksworth,et al.  Ainsworth & Bisby's Dictionary of the Fungi , 1972 .

[137]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[138]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[139]  L. Mendoza,et al.  The class mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. , 2002, Annual review of microbiology.

[140]  M. Sogin,et al.  The Nucleariid Amoebae: More Protists at the Animal-Fungal Boundary , 2001, The Journal of eukaryotic microbiology.

[141]  M. Sogin,et al.  Microbiology: Eukaryotic diversity in Spain's River of Fire , 2002, Nature.

[142]  L. Buss,et al.  Comparative Genomics of Large Mitochondria in Placozoans , 2007, PLoS genetics.

[143]  N. Maheshwari,et al.  Rhinosporidiosis: A Study that Resolves Etiologic Controversies , 1997, American journal of rhinology.

[144]  T. Cavalier-smith Protist phylogeny and the high-level classification of Protozoa , 2003 .

[145]  D. Patterson,et al.  Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic , 1993, Journal of the Marine Biological Association of the United Kingdom.

[146]  D. Patterson,et al.  The Diversity of Eukaryotes , 1999, The American Naturalist.

[147]  Frank E. Anderson,et al.  Bilaterian Phylogeny Based on Analyses of a Region of the Sodium–Potassium ATPase β-Subunit Gene , 2004, Journal of Molecular Evolution.

[148]  F. Nóbrega,et al.  The mitochondrial genome from the thermal dimorphic fungus Paracoccidioides brasiliensis , 2007, Yeast.

[149]  Terry Gaasterland,et al.  The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[150]  Xuhua Xia,et al.  Data Analysis in Molecular Biology and Evolution , 2002, Springer US.

[151]  T. Cavalier-smith,et al.  Phylogeny of Choanozoa, Apusozoa, and Other Protozoa and Early Eukaryote Megaevolution , 2003, Journal of Molecular Evolution.

[152]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[153]  Y. Inagaki,et al.  Multiple Gene Phylogenies Support the Monophyly of Cryptomonad and Haptophyte Host Lineages , 2007, Current Biology.

[154]  X. Xia,et al.  DAMBE: software package for data analysis in molecular biology and evolution. , 2001, The Journal of heredity.

[155]  Daniel Schwarzott,et al.  A new fungal phylum, the Glomeromycota: phylogeny and evolution * * Dedicated to Manfred Kluge (Tech , 2001 .

[156]  J. Palmer,et al.  Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[157]  Kenneth L. McNally,et al.  The complete DNA sequence of the mitochondrial genome of Podospora anserina , 1990, Current Genetics.

[158]  B. Leadbeater,et al.  Cytoskeleton Structure and Composition in Choanoflagellates , 1998 .

[159]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[160]  H. James-Clark XXXIII.—On the Spongiæ ciliatæ as Infusoria flagellata; or observations on the structure, animality, and relationship of Leucosolenia botryoides, bowerbank , 1868 .

[161]  Y. Inagaki,et al.  Evolution of the eukaryotic translation termination system: origins of release factors. , 2000, Molecular biology and evolution.

[162]  Manuel Maldonado,et al.  Choanoflagellates, choanocytes, and animal multicellularity , 2005 .

[163]  Y. Inagaki,et al.  Capsaspora owczarzaki is an independent opisthokont lineage , 2004, Current Biology.

[164]  J. W. Valentine,et al.  Phylogeny of Opisthokonta and the evolution of multicellularity and complexity in Fungi and Metazoa , 2003, International Journal of Astrobiology.

[165]  J. W. Taylor,et al.  The taxonomic status of Lacazia loboi and Rhinosporidium seeberi has been finally resolved with the use of molecular tools. , 2001, Revista iberoamericana de micologia.

[166]  M. Cafaro Eccrinales (Trichomycetes) are not fungi, but a clade of protists at the early divergence of animals and fungi. , 2005, Molecular phylogenetics and evolution.

[167]  Michael Weiss,et al.  A higher-level phylogenetic classification of the Fungi. , 2007, Mycological research.

[168]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[169]  K. Raper,et al.  FONTICULA ALBA: A NEW CELLULAR SLIME MOLD (ACRASIOMYCETES) , 1979 .

[170]  M. Telford The multimeric β‐thymosin found in nematodes and arthropods is not a synapomorphy of the Ecdysozoa , 2004, Evolution & development.

[171]  L. Buss,et al.  The evolution of individuality , 1987 .

[172]  Masashi Tsuchiya,et al.  Genetic Diversity of Microbial Eukaryotes in Anoxic Sediment of the Saline Meromictic Lake Namako-ike (Japan): On the Detection of Anaerobic or Anoxic-tolerant Lineages of Eukaryotes. , 2007, Protist.

[173]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[174]  M. Sleigh Protozoa and other protists , 1989 .

[175]  C. Bayne,et al.  The destruction of Schistosoma mansoni mother sporocysts in vitro by amoebae isolated from Biomphalaria glabrata: an ultrastructural study. , 1980, Journal of invertebrate pathology.

[176]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[177]  N. Lartillot,et al.  The new animal phylogeny: reliability and implications. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[178]  H Philippe,et al.  Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. , 2000, Molecular biology and evolution.

[179]  L. Smith,et al.  Molecular evidence that the myxozoan protists are metazoans. , 1994, Science.

[180]  John W. Taylor,et al.  Phylogenetic Analysis of Rhinosporidium seeberi’s 18S Small-Subunit Ribosomal DNA Groups This Pathogen among Members of the Protoctistan Mesomycetozoa Clade , 1999, Journal of Clinical Microbiology.

[181]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[182]  P. Holland,et al.  Phylogenomics of eukaryotes: impact of missing data on large alignments. , 2004, Molecular biology and evolution.

[183]  Purificación López-García,et al.  Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. , 2007, Molecular phylogenetics and evolution.

[184]  A. Collins,et al.  Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[185]  F. Studier,et al.  Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. , 1983, Journal of molecular biology.

[186]  D. Malloch,et al.  The origin of land plants: a matter of mycotrophism. , 1975, Bio Systems.

[187]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[188]  B. Lang,et al.  Unique mitochondrial genome architecture in unicellular relatives of animals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[189]  M. Ragan,et al.  Are Ichthyosporea animals or fungi? Bayesian phylogenetic analysis of elongation factor 1alpha of Ichthyophonus irregularis. , 2003, Molecular phylogenetics and evolution.

[190]  T. Cavalier-smith,et al.  Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. , 2005, Protist.

[191]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[192]  M. Berbee,et al.  Fungal Molecular Evolution: Gene Trees and Geologic Time , 2001 .

[193]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.