Two structurally atypical HEAT domains in the C-terminal portion of human eIF4G support binding to eIF4A and Mnk1.

[1]  G. Wagner,et al.  Ribosome Loading onto the mRNA Cap Is Driven by Conformational Coupling between eIF4G and eIF4E , 2003, Cell.

[2]  R. Korneluk,et al.  Distinct Regulation of Internal Ribosome Entry Site-mediated Translation following Cellular Stress Is Mediated by Apoptotic Fragments of eIF4G Translation Initiation Factor Family Members eIF4GI and p97/DAP5/NAT1* , 2003, The Journal of Biological Chemistry.

[3]  A. Gingras,et al.  Phosphorylation of eIF4E attenuates its interaction with mRNA 5' cap analogs by electrostatic repulsion: intein-mediated protein ligation strategy to obtain phosphorylated protein. , 2003, RNA.

[4]  A. Kimchi,et al.  The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  G. Scheper,et al.  Phosphorylation of Eukaryotic Initiation Factor 4E Markedly Reduces Its Affinity for Capped mRNA* , 2002, The Journal of Biological Chemistry.

[6]  Narayanan Eswar,et al.  MODBASE, a database of annotated comparative protein structure models , 2002, Nucleic Acids Res..

[7]  Liisa Holm,et al.  Identification of homology in protein structure classification , 2001, Nature Structural Biology.

[8]  N. Sonenberg,et al.  A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. , 2001, Molecular cell.

[9]  S. Pyronnet,et al.  Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. , 2000, Biochemical pharmacology.

[10]  R. Cuesta,et al.  Adenovirus‐specific translation by displacement of kinase Mnk1 from cap‐initiation complex eIF4F , 2000, The EMBO journal.

[11]  M. Clemens,et al.  Cleavage of polypeptide chain initiation factor eIF4GI during apoptosis in lymphoma cells: characterisation of an internal fragment generated by caspase-3-mediated cleavage , 2000, Cell Death and Differentiation.

[12]  Liam J. McGuffin,et al.  The PSIPRED protein structure prediction server , 2000, Bioinform..

[13]  S. Gygi,et al.  Serum‐stimulated, rapamycin‐sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI , 2000, The EMBO journal.

[14]  N. Sonenberg,et al.  Eukaryotic Translation Initiation Factor 4E (eIF4E) Binding Site and the Middle One-Third of eIF4GI Constitute the Core Domain for Cap-Dependent Translation, and the C-Terminal One-Third Functions as a Modulatory Region , 2000, Molecular and Cellular Biology.

[15]  N. Sonenberg,et al.  Translational control of gene expression , 2000 .

[16]  M. Hentze,et al.  Translation driven by an eIF4G core domain in vivo , 1999, The EMBO journal.

[17]  G. Blobel,et al.  STRUCTURE OF THE KARYOPHERIN BETA2-RAN GPPNHP NUCLEAR TRANSPORT COMPLEX , 1999 .

[18]  A. Gingras,et al.  Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. , 1999, Molecular cell.

[19]  C. Müller,et al.  Structure of importin-β bound to the IBB domain of importin-α , 1999, Nature.

[20]  E. Conti,et al.  Cell biology: Snail mail to the nucleus , 1999, Nature.

[21]  G. Blobel,et al.  Structure of the nuclear transport complex karyopherin-β2–Ran˙GppNHp , 1999, Nature.

[22]  A. Hinnebusch,et al.  Conserved bipartite motifs in yeast eIF5 and eIF2Bϵ, GTPase‐activating and GDP–GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2 , 1999, The EMBO journal.

[23]  Jonathan A. Cooper,et al.  Phosphorylation of the Cap-Binding Protein Eukaryotic Translation Initiation Factor 4E by Protein Kinase Mnk1 In Vivo , 1999, Molecular and Cellular Biology.

[24]  Russ Miller,et al.  The design and implementation of SnB version 2.0 , 1999 .

[25]  Brian A. Hemmings,et al.  The Structure of the Protein Phosphatase 2A PR65/A Subunit Reveals the Conformation of Its 15 Tandemly Repeated HEAT Motifs , 1999, Cell.

[26]  A. Gingras,et al.  Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E , 1999, The EMBO journal.

[27]  A. Gingras,et al.  eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. , 1999, Annual review of biochemistry.

[28]  Claire O'Donovan,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 , 1999, Nucleic Acids Res..

[29]  N. Sonenberg,et al.  A newly identified N‐terminal amino acid sequence of human eIF4G binds poly(A)‐binding protein and functions in poly(A)‐dependent translation , 1998, The EMBO journal.

[30]  A. Sali,et al.  Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[32]  N. Sonenberg,et al.  Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A , 1997, Molecular and cellular biology.

[33]  J U Bowie,et al.  Helix packing in membrane proteins. , 1997, Journal of molecular biology.

[34]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[35]  Jonathan A. Cooper,et al.  Mitogen‐activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2 , 1997, The EMBO journal.

[36]  Tony Hunter,et al.  MNK1, a new MAP kinase‐activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates , 1997, The EMBO journal.

[37]  A. Kimchi,et al.  DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferon-induced programmed cell death , 1997, Molecular and cellular biology.

[38]  N. Sonenberg,et al.  A new translational regulator with homology to eukaryotic translation initiation factor 4G , 1997, The EMBO journal.

[39]  T. Innerarity,et al.  A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. , 1997, Genes & development.

[40]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[41]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[42]  C. Hellen,et al.  Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes , 1996, Molecular and cellular biology.

[43]  G J Kleywegt,et al.  xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. , 1996, Acta crystallographica. Section D, Biological crystallography.

[44]  Peer Bork,et al.  HEAT repeats in the Huntington's disease protein , 1995, Nature Genetics.

[45]  R. Rhoads,et al.  Mapping of Functional Domains in Eukaryotic Protein Synthesis Initiation Factor 4G (eIF4G) with Picornaviral Proteases , 1995, The Journal of Biological Chemistry.

[46]  E. Koonin Multidomain organization of eukaryotic guanine nucleotide exchange translation initiation factor eIF‐2B subunits revealed by analysis of conserved sequence motifs , 1995, Protein science : a publication of the Protein Society.

[47]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[48]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[49]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[50]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[51]  G J Barton,et al.  ALSCRIPT: a tool to format multiple sequence alignments. , 1993, Protein engineering.

[52]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[53]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[54]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[55]  N. Sonenberg,et al.  Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F , 1990, Molecular and cellular biology.

[56]  C. Chothia,et al.  Helix to helix packing in proteins. , 1981, Journal of molecular biology.

[57]  N. Sonenberg,et al.  Eukaryotic mRNA cap binding protein : Purification by affinity chromatography on Sepharose-coupled m 7 GDP ( 7-methylguanosine / eukaryotic initiation factors / protein synthesis ) , 2022 .