Revisiting Quantum Discord for Two-Qubit X States: The Error Bound to an Analytical Formula

In this article, we investigate the error bound of quantum discord, obtained from the analytic formula of Ali et al. (Phys. Rev. A 81, 042105, 2010) for the case of general X states and from the analytic formula of Fanchini et al. (Phys. Rev. A 81, 052107, 2010) for the case of symmetric X states. For this purpose we consider 3-element POVM. We find that the results of Ali et al. and Fanchini et al. may have the worst-case errors of 0.004565 and 0.0009, respectively.

[1]  Animesh Datta,et al.  QUANTUM DISCORD AS A RESOURCE IN QUANTUM COMMUNICATION , 2012, 1204.6042.

[2]  Felipe F. Fanchini,et al.  Sudden change of quantum discord for a system of two qubits , 2013 .

[3]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[4]  T. Ralph,et al.  Observing the operational significance of discord consumption , 2012, Nature Physics.

[5]  G. Karpat,et al.  Invariant quantum discord in qubit–qutrit systems under local dephasing , 2012, 1208.5705.

[6]  Xiao-Ming Lu,et al.  Optimal measurements to access classical correlations of two-qubit states , 2010, 1009.1476.

[7]  Gernot Alber,et al.  Erratum: Quantum discord for two-qubit X states [Phys. Rev. A 81, 042105 (2010)] , 2010 .

[8]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[9]  F. F. Fanchini,et al.  System-reservoir dynamics of quantum and classical correlations , 2009, 0910.5711.

[10]  Sixia Yu,et al.  Quantum discord of two-qubit X states , 2011, 1102.0181.

[11]  S. Luo Quantum discord for two-qubit systems , 2008 .

[12]  S. Fei,et al.  Quantum Discord and Geometry for a Class of Two-qubit States , 2011, 1104.1843.

[13]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[14]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[15]  H. Zaraket,et al.  Positive-operator-valued measure optimization of classical correlations (6 pages) , 2004 .

[16]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[17]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[18]  Jiangfeng Du,et al.  Optimal measurement for quantum discord of two-qubit states , 2011, 1110.6681.

[19]  A. R. P. Rau,et al.  Quantum discord for qubit–qudit systems , 2012 .

[20]  A. Rau,et al.  Quantum discord for two-qubit X states , 2010, 1002.3429.

[21]  A. R. P. Rau,et al.  Calculation of quantum discord for qubit-qudit or N qubits , 2011, 1106.4488.

[22]  F. F. Fanchini,et al.  Non-Markovian dynamics of quantum discord , 2009, 0911.1096.

[23]  Subsystem purity as an enforcer of entanglement. , 2001, Physical review letters.

[24]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[25]  Jiangfeng Du,et al.  Quantum discord of two-qubit rank-2 states , 2011, 1107.2246.

[26]  G. Karpat,et al.  Correlation dynamics of qubit–qutrit systems in a classical dephasing environment , 2011, 1110.2040.

[27]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.