Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode

Present solid oxide fuel cells (SOFCs) use complex materials to provide (i) sufficient stability and support, (ii) electronic, ionic, and mass transport, and (iii) electrocatalytic activity. However, there is a limited quantitative understanding of the effect of the SOFC's three dimensional (3D) nano/microstructure on electronic, ionic, and mass-transfer-related losses. Here, a nondestructive tomographic imaging technique at 38.5 nm spatial resolution is used along with numerical models to examine the phase and pore networks within an SOFC anode and to provide insight into the heterogeneous microstructure's contributions to the origins of transport-related losses. The microstructure produces substantial localized structure-induced losses, with approximately 50% of those losses arising from phase cross-sectional diameters of 0.2 μm or less.

[1]  Svein Sunde,et al.  Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .

[2]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[3]  W. Chiu,et al.  Lattice Boltzmann method for continuum, multi-component mass diffusion in complex 2D geometries , 2007 .

[4]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[5]  W. Chiu,et al.  Nondestructive Imaging and Analysis of Transport Processes in the Solid Oxide Fuel Cell Anode , 2009 .

[6]  L. Luo,et al.  Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Wilson K. S. Chiu,et al.  Lattice Boltzmann method for multi-component, non-continuum mass diffusion , 2007 .

[8]  U. Anselmi-Tamburini Electrical properties of Ni / YSZ cermets obtained through combustion synthesis , 1998 .

[9]  Mogens Bjerg Mogensen,et al.  Ni–YSZ Solid Oxide Fuel Cell Anode Behavior Upon Redox Cycling Based on Electrical Characterization , 2007 .

[10]  Robert J. Flatt,et al.  FIB-Nanotomography of Particulate Systems—Part II: Particle Recognition and Effect of Boundary Truncation , 2006 .

[11]  G. Doolen,et al.  Diffusion in a multicomponent lattice Boltzmann equation model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .

[13]  L. A. Chick,et al.  Diffusion Limitations in the Porous Anodes of SOFCs , 2003 .

[14]  Lorenz Holzer,et al.  Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion , 2008 .

[15]  Peter Grathwohl,et al.  Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics , 1998 .

[16]  B. Münch,et al.  Toward Reproducible Three-Dimensional Microstructure Analysis of Granular Materials and Complex Suspensions , 2009, Microscopy and Microanalysis.

[17]  Michael D. Uchic,et al.  3-D microstructural characterization: Methods, analysis, and applications , 2006 .

[18]  Dieter Wolf-Gladrow,et al.  5. Lattice Boltzmann Models , 2000 .

[19]  Timo Kivisaari,et al.  Solid Oxide Fuel Cell System and the Economical Feasibility , 2006 .

[20]  Kamel Fezzaa,et al.  Dedicated full-field X-ray imaging beamline at Advanced Photon Source , 2007 .

[21]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .

[22]  P. Lallemand,et al.  Diffusion simulation with a deterministic one-dimensional lattice-gas model , 1992 .

[23]  de Fa Frank Bruijn,et al.  The current status of fuel cell technology for mobile and stationary applications , 2005 .

[24]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.

[25]  W. Lehnert,et al.  Structural properties of SOFC anodes and reactivity , 1998 .

[26]  W. Chiu,et al.  Modeling of gas transport through a tubular solid oxide fuel cell and the porous anode layer , 2008 .

[27]  J. Bearden,et al.  REEVALUATION OF X-RAY ATOMIC ENERGY LEVELS. , 1967 .

[28]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[29]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[30]  Nigel P. Brandon,et al.  Recent Advances in Materials for Fuel Cells , 2003 .

[31]  Wilson K. S. Chiu,et al.  Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution , 2008 .

[32]  Robert J. Kee,et al.  Importance of Anode Microstructure in Modeling Solid Oxide Fuel Cells , 2008 .

[33]  K. Sasaki,et al.  Re-analysis of defect equilibria and transport parameters in Y2O3-stabilized ZrO2 using EPR and optical relaxation , 2000 .

[34]  D. Jeon,et al.  A random resistor network analysis on anodic performance enhancement of solid oxide fuel cells by penetrating electrolyte structures , 2005 .

[35]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[36]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[37]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[38]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[39]  S. Barnett,et al.  Solid Oxide Fuel Cell Ni–YSZ Anodes: Effect of Composition on Microstructure and Performance , 2008 .

[40]  Wilson K. S. Chiu,et al.  Lattice Boltzmann Modeling of Three-Dimensional, Multicomponent Mass Diffusion in a Solid Oxide Fuel Cell Anode , 2010 .

[41]  Nigel P. Brandon,et al.  Microstructural Modeling of Solid Oxide Fuel Cell Anodes , 2008 .

[42]  Mogens Bjerg Mogensen,et al.  Time-of-flight secondary ion mass spectrometry as a tool for studying segregation phenomena at nickel–YSZ interfaces , 2006 .

[43]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[44]  Svein Sunde,et al.  Monte Carlo Simulations of Conductivity of Composite Electrodes for Solid Oxide Fuel Cells , 1996 .

[45]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[46]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[47]  Hongtao Cui,et al.  X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source , 2007 .

[48]  K. M. Bryden,et al.  Parallel performance and accuracy of lattice Boltzmann and traditional finite difference methods for solving the unsteady two-dimensional Burger's equation , 2006 .

[49]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[50]  P. Levitz,et al.  Disordered porous solids : from chord distributions to small angle scattering , 1992 .

[51]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[52]  Elisabetta Arato,et al.  Some more considerations on the optimization of cermet solid oxide fuel cell electrodes , 1998 .

[53]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[54]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[55]  S. Sunde Simulations of Composite Electrodes in Fuel Cells , 2000 .

[56]  Michael R. von Spakovsky,et al.  Direct numerical calculation of the kinematic tortuosity of reactive mixture flow in the anode layer of solid oxide fuel cells by the lattice Boltzmann method , 2007 .

[57]  Paola Costamagna,et al.  Effect of composition on the performance of cermet electrodes. Experimental and theoretical approach , 2002 .

[58]  Wilson K. S. Chiu,et al.  Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode , 2007 .

[59]  Q. Shen,et al.  Hard x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. , 2008 .

[60]  Kenneth Reifsnider,et al.  Multi-scale modeling approaches for functional nano-composite materials , 2006 .

[61]  Ki Hyun Yoon,et al.  Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet , 2002 .

[62]  Salvatore Torquato,et al.  STATISTICAL DESCRIPTION OF MICROSTRUCTURES , 2002 .

[63]  J. Abraham,et al.  Lattice Boltzmann methods for binary mixtures with different molecular weights. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  J. Fitz-Gerald,et al.  High-resolution three-dimensional reconstruction: A combined scanning electron microscope and focused ion-beam approach , 2006 .

[65]  Chih-Long Tsai,et al.  Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates , 2008 .