Predicting Optimal Trim Configuration of Marine Vessels with respect to Fuel Usage

[1]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[2]  John P. Comstock,et al.  Principles of naval architecture , 1967 .

[3]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[4]  K. S. Varyani,et al.  Squat effects on high speed craft in restricted waterways , 2006 .

[5]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[6]  R. M. Isherwood WIND RESISTANCE OF MERCHANT SHIPS , 1972 .

[7]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[8]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[9]  F. Pérez Arribas Some methods to obtain the added resistance of a ship advancing in waves , 2007 .

[10]  J. Holtrop,et al.  A statistical re-analysis of resistance and propulsion data , 1984 .

[11]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[12]  R. Rocchi Delivered Power - Trim And Sinkage - ShipHull Forms: An Analysis Of The Effects Of TheTrim Variations On The Power PerformanceOf A Class Of Modern Container Ships , 1970 .

[13]  J. Holtrop,et al.  AN APPROXIMATE POWER PREDICTION METHOD , 1982 .

[14]  T. Cover LEARNING IN PATTERN RECOGNITION , 1969 .

[15]  Edward A. Patrick,et al.  A Generalized k-Nearest Neighbor Rule , 1970, Inf. Control..

[16]  Thomas Hellström Optimal Pitch, Speed and Fuel Control at Sea , 2004 .

[17]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .