The effect of global warming on Western Mediterranean seagrasses: a preliminary agent-based modelling approach

The Mediterranean Sea exhibits rapid warming rates compared to the global average leading to worrying consequences for its inhabiting organisms. Seagrasses are key structural elements in coastal ecosystems, and studying how temperature affects these species is crucial to anticipate the implications of global warming. In this work, we use an empirically-based numerical model to study the combined dynamics of Posidonia oceanica and Cymodocea nodosa and their resilience to sea warming. The model is parametrised using seagrass growth rates measured at the Western Mediterranean Sea. Under favorable growth conditions, our simulations predict the emergence of a coexistence region at the front between mono-specific meadows. This region can be characterised by its width and local shoot densities, which are found to depend on the coupling parameter between Posidonia oceanica and Cymodocea nodosa species. Such regions have been empirically observed in Ses Olles de Son Saura (Balearic Islands, Western Mediterranean Sea). A comparison between the field measurements at the study site with the model predictions has been used to fit the value of the coupling parameter. Field data also relates the width of the coexistence region to the average length of Posidonia oceanica leaves at the front. Remarkably, a linear relationship is found between the coupling parameter and the leaf length. In the presence of sea warming, the model predicts an exponential decay in the population of Posidonia oceanica, which is highly sensitive to temperature. This behaviour is a direct consequence of the clonal nature of the plant and can be characterised by the model parameters. Considering a scenario of high greenhouse emissions, our model forecasts that Posidonia oceanica meadows will lose 70% of their population by the year 2050. Cymodocea nodosa, with higher thermal resilience, acts as an opportunistic species conquering the space left by the degraded Posidonia oceanica. evallabres@ifisc.uib-csic.es 1 ar X iv :2 20 4. 11 55 9v 3 [ qbi o. PE ] 1 1 M ay 2 02 3

[1]  R. Unsworth,et al.  The planetary role of seagrass conservation , 2022, Science.

[2]  N. Marbà,et al.  A mathematical model for inter‐specific interactions in seagrasses , 2022, Oikos.

[3]  N. Marbà,et al.  Thermal Performance of Seaweeds and Seagrasses Across a Regional Climate Gradient , 2022, Frontiers in Marine Science.

[4]  V. M. Giacalone,et al.  Thermo-priming increases heat-stress tolerance in seedlings of the Mediterranean seagrass P. oceanica. , 2021, Marine pollution bulletin.

[5]  Rosa M. Chefaoui,et al.  Warming Threatens to Propel the Expansion of the Exotic Seagrass Halophila stipulacea , 2021, Frontiers in Marine Science.

[6]  N. Marbà,et al.  Resilience of seagrass populations to thermal stress does not reflect regional differences in ocean climate , 2021, The New phytologist.

[7]  L. Marín-Guirao,et al.  Long-term coexistence between the macroalga Caulerpa prolifera and the seagrass Cymodocea nodosa in a Mediterranean lagoon , 2021, Aquatic Botany.

[8]  R. Connolly,et al.  Long‐term declines and recovery of meadow area across the world’s seagrass bioregions , 2021, Global change biology.

[9]  P. Ralph,et al.  Stress Memory in Seagrasses: First Insight Into the Effects of Thermal Priming and the Role of Epigenetic Modifications , 2020, Frontiers in Plant Science.

[10]  J. Castilla,et al.  Rebuilding marine life , 2020, Nature.

[11]  E. Knobloch,et al.  Patterns, localized structures and fronts in a reduced model of clonal plant growth , 2020, 2001.00224.

[12]  D. Gomila,et al.  Distribution of growth directions in meadows of clonal plants. , 2019, Physical review. E.

[13]  J. Ruíz,et al.  Recent trend reversal for declining European seagrass meadows , 2019, Nature Communications.

[14]  S. Somot,et al.  Future evolution of Marine Heatwaves in the Mediterranean Sea , 2019, Climate Dynamics.

[15]  J. Fernández-Palacios,et al.  Long-Term Dynamic in Nutrients, Chlorophyll a, and Water Quality Parameters in a Coastal Lagoon During a Process of Eutrophication for Decades, a Sudden Break and a Relatively Rapid Recovery , 2019, Front. Mar. Sci..

[16]  N. Marbà,et al.  Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming , 2018, Ecology and evolution.

[17]  Rosa M. Chefaoui,et al.  Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea , 2018, Global change biology.

[18]  D. Krause‐Jensen,et al.  Life history events of eelgrass (Zostera marina L.) populations across gradients of latitude and temperature , 2018 .

[19]  C. Paoli,et al.  Ecosystem functions and economic wealth: Trajectories of change in seagrass meadows , 2017 .

[20]  J. Romero,et al.  Experimental evidence of warming-induced flowering in the Mediterranean seagrass Posidonia oceanica. , 2017, Marine pollution bulletin.

[21]  N. Marbà,et al.  Fairy circle landscapes under the sea , 2017, Science Advances.

[22]  J. Terrados,et al.  Fast-spreading green beds of recently introduced Halimeda incrassata invade Mallorca island (NW Mediterranean Sea) , 2016 .

[23]  G. Procaccini,et al.  Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses , 2016, Scientific Reports.

[24]  Will F. Figueira,et al.  The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts , 2014, Proceedings of the Royal Society B: Biological Sciences.

[25]  N. Marbà,et al.  Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009 , 2014 .

[26]  J. Romero,et al.  Seasonal uncoupling of demographic processes in a marine clonal plant , 2014 .

[27]  M. Holmer,et al.  Eelgrass fairy rings: sulfide as inhibiting agent , 2014 .

[28]  N. Marbà,et al.  Assessing the CO2 capture potential of seagrass restoration projects , 2013 .

[29]  N. Marbà,et al.  Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies , 2013 .

[30]  S. Bell,et al.  Rhizophytic Algal Communities of Shallow, Coastal Habitats in Florida: Components Above and Below the Sediment Surface , 2013 .

[31]  G. Pergent,et al.  Is Posidonia oceanica regression a general feature in the Mediterranean Sea , 2013 .

[32]  F. Tuya,et al.  Drastic decadal decline of the seagrass Cymodocea nodosa at Gran Canaria (eastern Atlantic): Interactions with the green algae Caulerpa prolifera , 2013 .

[33]  N. Marbà,et al.  Mediterranean seagrass vulnerable to regional climate warming , 2012 .

[34]  V. Quintino,et al.  Cymodocea nodosa vs. Caulerpa prolifera: Causes and consequences of a long term history of interaction in macrophyte meadows in the Mar Menor coastal lagoon (Spain, southwestern Mediterranean) , 2012 .

[35]  F. Figueroa,et al.  Physiological response and photoacclimation capacity of Caulerpa prolifera (Forsskål) J.V. Lamouroux and Cymodocea nodosa (Ucria) Ascherson meadows in the Mar Menor lagoon (SE Spain). , 2012, Marine environmental research.

[36]  N. Marbà,et al.  Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica , 2012, PloS one.

[37]  Catherine J. Collier,et al.  Thermal tolerance of two seagrass species at contrasting light levels: Implications for future distribution in the Great Barrier Reef , 2011 .

[38]  Constantine D. Memos,et al.  Wave attenuation due to Posidonia oceanica meadows , 2011 .

[39]  J. López-Jurado,et al.  Climate change in the Western Mediterranean Sea 1900-2008 , 2010 .

[40]  E. Zambianchi,et al.  Genetic structure in the Mediterranean seagrass Posidonia oceanica: disentangling past vicariance events from contemporary patterns of gene flow , 2010, Molecular ecology.

[41]  Marten Scheffer,et al.  Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. , 2010, Ecology.

[42]  Núria Marbà,et al.  Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality , 2009 .

[43]  M. Verlaque,et al.  Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review , 2009 .

[44]  Sebastiano Calvo,et al.  Seagrass meadows at the extreme of environmental tolerance: the case of Posidonia oceanica in a semi-enclosed coastal lagoon , 2009 .

[45]  Frederick T. Short,et al.  Accelerating loss of seagrasses across the globe threatens coastal ecosystems , 2009, Proceedings of the National Academy of Sciences.

[46]  Carlos M. Duarte,et al.  Associations of concern: Declining seagrasses and threatened dependent species , 2009 .

[47]  J. Elith,et al.  Species Distribution Models: Ecological Explanation and Prediction Across Space and Time , 2009 .

[48]  C. Duarte,et al.  Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean–Atlantic transition region , 2008 .

[49]  Frederick T. Short,et al.  Global seagrass distribution and diversity: A bioregional model , 2007 .

[50]  M. Migliaccio,et al.  Vicariance patterns in the Mediterranean Sea: east–west cleavage and low dispersal in the endemic seagrass Posidonia oceanica , 2007 .

[51]  Frederick T. Short,et al.  A Global Crisis for Seagrass Ecosystems , 2006 .

[52]  V. Pasqualini,et al.  Morphological responses of Posidonia oceanica to experimental nutrient enrichment of the canopy water , 2006 .

[53]  N. Marbà,et al.  Modeling nonlinear seagrass clonal growth: Assessing the efficiency of space occupation across the seagrass flora , 2006 .

[54]  Jack J. Middelburg,et al.  Major role of marine vegetation on the oceanic carbon cycle , 2004 .

[55]  L. Benedetti‐Cecchi,et al.  Variability in patterns of growth and morphology of Posidonia oceanica exposed to urban and industrial wastes: contrasts with two reference locations , 2004 .

[56]  J. Stachowicz,et al.  Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. Krause‐Jensen,et al.  Spatial and temporal variation in eelgrass (Zostera marina) landscapes: influence of physical setting , 2004 .

[58]  M. Mateo,et al.  Variability in Detritus Stocks in Beds of the Seagrass Cymodocea nodosa , 2001 .

[59]  J. Romero,et al.  Effects of fish farm loadings on seagrass (Posidonia oceanica) distribution, growth and photosynthesis. , 2001, Marine pollution bulletin.

[60]  Sidney H. Young,et al.  Linear Least-Squares Regression , 2000 .

[61]  Carlos M. Duarte,et al.  Seagrass Biomass And Production: A Reassessment , 1999 .

[62]  V. Pasqualini,et al.  Environmental impact identification along the Corsican coast (Mediterranean sea) using image processing , 1999 .

[63]  N. Marbà,et al.  Rhizome elongation and seagrass clonal growth , 1998 .

[64]  N. Marbà,et al.  Root production and belowground seagrass biomass , 1998 .

[65]  J. Romero,et al.  Effects of pH on seagrass photosynthesis: a laboratory and field assessment , 1997 .

[66]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[67]  Núria Marbà,et al.  Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast:elucidating seagrass decline , 1996 .

[68]  N. Marbà,et al.  Growth patterns of Western Mediterranean seagrasses:species-specific responses to seasonal forcing , 1996 .

[69]  D. Burdick,et al.  Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina , 1995 .

[70]  G. Pergent,et al.  Primary production of Posidonia oceanica in the Mediterranean Basin , 1994, Marine Biology.

[71]  C. Duarte,et al.  Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply , 1994 .

[72]  M. Fonseca,et al.  A preliminary evaluation of wave attenuation by four species of seagrass , 1992 .

[73]  P. Tomlinson,et al.  Adaptive architecture in rhizomatous plants , 1980 .

[74]  M. Ha-Duong,et al.  Climate change 2014 - Mitigation of climate change , 2015 .

[75]  J. Templado Future Trends of Mediterranean Biodiversity , 2014 .

[76]  C. Matthee,et al.  Range expansions across ecoregions: interactions of climate change, physiology and genetic diversity. , 2014 .

[77]  Gary A. Kendrick,et al.  Nonlinear processes in seagrass colonisation explained by simple clonal growth rules , 2005 .

[78]  J. Romero,et al.  Effects of fish farming on seagrass ( Posidonia oceanica) in a Mediterranean bay: seagrass decline a , 1999 .

[79]  X. de Villèle,et al.  Changes and Degradation in a Posidonia oceanica Bed Invaded by the Introduced Tropical Alga Caulerpa taxifolia in the North Western Mediterranean , 1995 .

[80]  Fortes,et al.  Reconstruction of seagrass dynamics: age determinations and associated tools for the seagrass ecologist , 1994 .

[81]  R. Watson,et al.  Simulation Estimates of Annual Yield and Landed Value for Commercial Penaeid Prawns from a Tropical Seagrass Habitat, Northern Queensland, Australia , 1993 .

[82]  C. Duarte Temporal biomass variability and production/biomass relationships of seagrass communities , 1989 .