Quantum adiabatic machine learning
暂无分享,去创建一个
[1] A. Young,et al. Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.
[2] Vicky Choi,et al. Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..
[3] Hartmut Neven,et al. NIPS 2009 Demonstration: Binary Classification using Hardware Implementation of Quantum Annealing , 2009 .
[4] Dorian Pyle,et al. Data Preparation for Data Mining , 1999 .
[5] Hasan Amjad,et al. Efficiently checking propositional refutations in HOL theorem provers , 2009, J. Appl. Log..
[6] N. Cerf,et al. Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.
[7] Hartmut Neven,et al. Training a Large Scale Classifier with the Quantum Adiabatic Algorithm , 2009, ArXiv.
[8] Edsger W. Dijkstra,et al. Notes on structured programming , 1970 .
[9] Temple F. Smith. Occam's razor , 1980, Nature.
[10] Daniel A Lidar,et al. Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.
[11] Fabián A. Chudak,et al. The Ising model : teaching an old problem new tricks , 2010 .
[12] Huan Liu,et al. Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..
[13] M. Sipser,et al. Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.
[14] L. Breiman. Arcing classifier (with discussion and a rejoinder by the author) , 1998 .
[15] Vicky Choi,et al. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..
[16] Andrew M. Childs,et al. Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.
[17] D. Lidar,et al. Adiabatic quantum computation in open systems. , 2005, Physical review letters.
[18] Jean-Marc Jézéquel,et al. Design by Contract to Improve Software Vigilance , 2006, IEEE Transactions on Software Engineering.
[19] Daniel A. Lidar,et al. Quantum adiabatic brachistochrone. , 2009, Physical review letters.
[20] W. Macready,et al. Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization , 2008, 0804.4457.
[21] Daniel A. Lidar,et al. Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions , 2010, 1004.0509.
[22] Gregory Tassey,et al. Prepared for what , 2007 .
[23] Fabián A. Chudak,et al. Investigating the performance of an adiabatic quantum optimization processor , 2010, Quantum Inf. Process..
[24] Gilles Brassard,et al. Machine Learning in a Quantum World , 2006, Canadian AI.
[25] Yoav Freund,et al. A Short Introduction to Boosting , 1999 .
[26] Spiros Mancoridis,et al. On the use of computational geometry to detect software faults at runtime , 2010, ICAC '10.
[27] R. Schapire. The Strength of Weak Learnability , 1990, Machine Learning.
[28] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[29] Yu Lei,et al. Practical Combinatorial Testing , 2010 .
[30] Jiawei Han,et al. Discriminative Frequent Pattern Analysis for Effective Classification , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[31] A. Jefferson Offutt,et al. Combination testing strategies: a survey , 2005, Softw. Test. Verification Reliab..
[32] Daniel Kroening,et al. A Survey of Automated Techniques for Formal Software Verification , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[33] M. Ruskai,et al. Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.
[34] M. W. Johnson,et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.
[35] Vasil S. Denchev,et al. Training a Binary Classifier with the Quantum Adiabatic Algorithm , 2008, 0811.0416.
[36] Gunnar Rätsch,et al. An Introduction to Boosting and Leveraging , 2002, Machine Learning Summer School.
[37] Rocco A. Servedio,et al. Equivalences and Separations Between Quantum and Classical Learnability , 2004, SIAM J. Comput..
[38] Stefan Teufel,et al. Adiabatic perturbation theory in quantum dynamics , 2003 .
[39] VARUN CHANDOLA,et al. Anomaly detection: A survey , 2009, CSUR.
[40] D. Richard Kuhn,et al. COMBINATORIAL TESTING , 2011 .
[41] L. Breiman. Arcing Classifiers , 1998 .
[42] Daniel A. Lidar,et al. Accuracy versus run time in an adiabatic quantum search , 2010, 1008.0863.
[43] E. Farhi,et al. Perturbative gadgets at arbitrary orders , 2008, 0802.1874.
[44] P. Shor,et al. Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.
[45] Shie Mannor,et al. Geometric Bounds for Generalization in Boosting , 2001, COLT/EuroCOLT.
[46] Sotiris B. Kotsiantis,et al. Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.
[47] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[48] Yu Lei,et al. SP 800-142. Practical Combinatorial Testing , 2010 .
[49] D.M. Cohen,et al. The Combinatorial Design Approach to Automatic Test Generation , 1996, IEEE Softw..
[50] Daniel A. Lidar,et al. Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.
[51] Seth Lloyd,et al. Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[52] Randal E. Bryant,et al. Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.
[53] Seth Lloyd,et al. Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation , 2007, SIAM J. Comput..
[54] Daniel A. Lidar,et al. Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.
[55] J. Biamonte,et al. Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.
[56] D. Slepian. On The Number of Symmetry Types of Boolean Functions of n Variables , 1953, Canadian Journal of Mathematics.