Quantum adiabatic machine learning

Abstract We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.

[1]  A. Young,et al.  Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.

[2]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[3]  Hartmut Neven,et al.  NIPS 2009 Demonstration: Binary Classification using Hardware Implementation of Quantum Annealing , 2009 .

[4]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[5]  Hasan Amjad,et al.  Efficiently checking propositional refutations in HOL theorem provers , 2009, J. Appl. Log..

[6]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[7]  Hartmut Neven,et al.  Training a Large Scale Classifier with the Quantum Adiabatic Algorithm , 2009, ArXiv.

[8]  Edsger W. Dijkstra,et al.  Notes on structured programming , 1970 .

[9]  Temple F. Smith Occam's razor , 1980, Nature.

[10]  Daniel A Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.

[11]  Fabián A. Chudak,et al.  The Ising model : teaching an old problem new tricks , 2010 .

[12]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[13]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[14]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[15]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[16]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[17]  D. Lidar,et al.  Adiabatic quantum computation in open systems. , 2005, Physical review letters.

[18]  Jean-Marc Jézéquel,et al.  Design by Contract to Improve Software Vigilance , 2006, IEEE Transactions on Software Engineering.

[19]  Daniel A. Lidar,et al.  Quantum adiabatic brachistochrone. , 2009, Physical review letters.

[20]  W. Macready,et al.  Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization , 2008, 0804.4457.

[21]  Daniel A. Lidar,et al.  Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions , 2010, 1004.0509.

[22]  Gregory Tassey,et al.  Prepared for what , 2007 .

[23]  Fabián A. Chudak,et al.  Investigating the performance of an adiabatic quantum optimization processor , 2010, Quantum Inf. Process..

[24]  Gilles Brassard,et al.  Machine Learning in a Quantum World , 2006, Canadian AI.

[25]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[26]  Spiros Mancoridis,et al.  On the use of computational geometry to detect software faults at runtime , 2010, ICAC '10.

[27]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[28]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[29]  Yu Lei,et al.  Practical Combinatorial Testing , 2010 .

[30]  Jiawei Han,et al.  Discriminative Frequent Pattern Analysis for Effective Classification , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[31]  A. Jefferson Offutt,et al.  Combination testing strategies: a survey , 2005, Softw. Test. Verification Reliab..

[32]  Daniel Kroening,et al.  A Survey of Automated Techniques for Formal Software Verification , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[33]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[34]  M. W. Johnson,et al.  Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.

[35]  Vasil S. Denchev,et al.  Training a Binary Classifier with the Quantum Adiabatic Algorithm , 2008, 0811.0416.

[36]  Gunnar Rätsch,et al.  An Introduction to Boosting and Leveraging , 2002, Machine Learning Summer School.

[37]  Rocco A. Servedio,et al.  Equivalences and Separations Between Quantum and Classical Learnability , 2004, SIAM J. Comput..

[38]  Stefan Teufel,et al.  Adiabatic perturbation theory in quantum dynamics , 2003 .

[39]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[40]  D. Richard Kuhn,et al.  COMBINATORIAL TESTING , 2011 .

[41]  L. Breiman Arcing Classifiers , 1998 .

[42]  Daniel A. Lidar,et al.  Accuracy versus run time in an adiabatic quantum search , 2010, 1008.0863.

[43]  E. Farhi,et al.  Perturbative gadgets at arbitrary orders , 2008, 0802.1874.

[44]  P. Shor,et al.  Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.

[45]  Shie Mannor,et al.  Geometric Bounds for Generalization in Boosting , 2001, COLT/EuroCOLT.

[46]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[47]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[48]  Yu Lei,et al.  SP 800-142. Practical Combinatorial Testing , 2010 .

[49]  D.M. Cohen,et al.  The Combinatorial Design Approach to Automatic Test Generation , 1996, IEEE Softw..

[50]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[51]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[52]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[53]  Seth Lloyd,et al.  Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation , 2007, SIAM J. Comput..

[54]  Daniel A. Lidar,et al.  Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.

[55]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[56]  D. Slepian On The Number of Symmetry Types of Boolean Functions of n Variables , 1953, Canadian Journal of Mathematics.