A New Vertex Coloring Heuristic and Corresponding Chromatic Number

One method to obtain a proper vertex coloring of graphs using a reasonable number of colors is to start from any arbitrary proper coloring and then repeat some local re-coloring techniques to reduce the number of color classes. The Grundy (First-Fit) coloring and color-dominating colorings of graphs are two well-known such techniques. The color-dominating colorings are also known and commonly referred as b-colorings. But these two topics have been studied separately in graph theory. We introduce a new coloring procedure which combines the strategies of these two techniques and satisfies an additional property. We first prove that the vertices of every graph G can be effectively colored using color classes say C1,…,Ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_1, \ldots , C_k$$\end{document} such that (i) for any two colors i and j with 1≤i<j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i< j \le k$$\end{document}, any vertex of color j is adjacent to a vertex of color i, (ii) there exists a set {u1,…,uk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{u_1, \ldots , u_k\}$$\end{document} of vertices of G such that uj∈Cj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_j\in C_j$$\end{document} for any j∈{1,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in \{1, \ldots , k\}$$\end{document} and uk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_k$$\end{document} is adjacent to uj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_j$$\end{document} for each 1≤j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le j \le k$$\end{document} with j≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\not = k$$\end{document}, and (iii) for each i and j with i≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\not = j$$\end{document}, the vertex uj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_j$$\end{document} has a neighbor in Ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_i$$\end{document}. This provides a new vertex coloring heuristic which improves both Grundy and color-dominating colorings. Denote by z(G) the maximum number of colors used in any proper vertex coloring satisfying the above properties. The z(G) quantifies the worst-case behavior of the heuristic. We prove the existence of {Gn}n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{G_n\}_{n\ge 1}$$\end{document} such that min{Γ(Gn),b(Gn)}→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{\Gamma (G_n), b(G_n)\} \rightarrow \infty $$\end{document} but z(Gn)≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z(G_n)\le 3$$\end{document} for each n. For each positive integer t we construct a family of finitely many colored graphs Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {D}}}_t$$\end{document} satisfying the property that if z(G)≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z(G)\ge t$$\end{document} for a graph G then G contains an element from Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {D}}}_t$$\end{document} as a colored subgraph. This provides an algorithmic method for proving numeric upper bounds for z(G).

[1]  Steven W. Reyner,et al.  An Analysis of a Good Algorithm for the Subtree Problem , 1977, SIAM J. Comput..

[2]  Paolo Toth,et al.  A survey on vertex coloring problems , 2010, Int. Trans. Oper. Res..

[3]  Eun Jung Kim,et al.  Complexity of Grundy Coloring and Its Variants , 2014, COCOON.

[4]  Iztok Peterin,et al.  The b-chromatic number and related topics - A survey , 2018, Discret. Appl. Math..

[5]  Rajeev Motwani,et al.  The Greedy Algorithm is Optimal for On-Line Edge Coloring , 1992, Inf. Process. Lett..

[6]  David Zuckerman Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..

[7]  Rakesh M. Verma,et al.  An Analysis of a Good Algorithm for the Subtree Problem, Corrected , 1989, SIAM J. Comput..

[8]  Feng Luo,et al.  Exploring the k-colorable landscape with Iterated Greedy , 1993, Cliques, Coloring, and Satisfiability.

[9]  Manouchehr Zaker,et al.  Results on the Grundy chromatic number of graphs , 2006, Discret. Math..

[10]  Manouchehr Zaker,et al.  Grundy chromatic number of the complement of bipartite graphs , 2005, Australas. J Comb..

[11]  Mitre Costa Dourado,et al.  Connected Greedy Colourings , 2014, LATIN.

[12]  Frédéric Havet,et al.  On the Grundy and b-Chromatic Numbers of a Graph , 2013, Algorithmica.

[13]  András Gyárfás,et al.  On-line and first fit colorings of graphs , 1988, J. Graph Theory.

[14]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[15]  J. Culberson Iterated Greedy Graph Coloring and the Difficulty Landscape , 1992 .

[16]  David Manlove,et al.  The b-chromatic Number of a Graph , 1999, Discret. Appl. Math..

[17]  Olivier Togni,et al.  A characterization of b-chromatic and partial , 2018 .