One method to obtain a proper vertex coloring of graphs using a reasonable number of colors is to start from any arbitrary proper coloring and then repeat some local re-coloring techniques to reduce the number of color classes. The Grundy (First-Fit) coloring and color-dominating colorings of graphs are two well-known such techniques. The color-dominating colorings are also known and commonly referred as b-colorings. But these two topics have been studied separately in graph theory. We introduce a new coloring procedure which combines the strategies of these two techniques and satisfies an additional property. We first prove that the vertices of every graph G can be effectively colored using color classes say C1,…,Ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_1, \ldots , C_k$$\end{document} such that (i) for any two colors i and j with 1≤i<j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i< j \le k$$\end{document}, any vertex of color j is adjacent to a vertex of color i, (ii) there exists a set {u1,…,uk}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{u_1, \ldots , u_k\}$$\end{document} of vertices of G such that uj∈Cj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_j\in C_j$$\end{document} for any j∈{1,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in \{1, \ldots , k\}$$\end{document} and uk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_k$$\end{document} is adjacent to uj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_j$$\end{document} for each 1≤j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le j \le k$$\end{document} with j≠k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\not = k$$\end{document}, and (iii) for each i and j with i≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\not = j$$\end{document}, the vertex uj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_j$$\end{document} has a neighbor in Ci\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_i$$\end{document}. This provides a new vertex coloring heuristic which improves both Grundy and color-dominating colorings. Denote by z(G) the maximum number of colors used in any proper vertex coloring satisfying the above properties. The z(G) quantifies the worst-case behavior of the heuristic. We prove the existence of {Gn}n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{G_n\}_{n\ge 1}$$\end{document} such that min{Γ(Gn),b(Gn)}→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{\Gamma (G_n), b(G_n)\} \rightarrow \infty $$\end{document} but z(Gn)≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z(G_n)\le 3$$\end{document} for each n. For each positive integer t we construct a family of finitely many colored graphs Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {D}}}_t$$\end{document} satisfying the property that if z(G)≥t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z(G)\ge t$$\end{document} for a graph G then G contains an element from Dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {D}}}_t$$\end{document} as a colored subgraph. This provides an algorithmic method for proving numeric upper bounds for z(G).
[1]
Steven W. Reyner,et al.
An Analysis of a Good Algorithm for the Subtree Problem
,
1977,
SIAM J. Comput..
[2]
Paolo Toth,et al.
A survey on vertex coloring problems
,
2010,
Int. Trans. Oper. Res..
[3]
Eun Jung Kim,et al.
Complexity of Grundy Coloring and Its Variants
,
2014,
COCOON.
[4]
Iztok Peterin,et al.
The b-chromatic number and related topics - A survey
,
2018,
Discret. Appl. Math..
[5]
Rajeev Motwani,et al.
The Greedy Algorithm is Optimal for On-Line Edge Coloring
,
1992,
Inf. Process. Lett..
[6]
David Zuckerman.
Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number
,
2007,
Theory Comput..
[7]
Rakesh M. Verma,et al.
An Analysis of a Good Algorithm for the Subtree Problem, Corrected
,
1989,
SIAM J. Comput..
[8]
Feng Luo,et al.
Exploring the k-colorable landscape with Iterated Greedy
,
1993,
Cliques, Coloring, and Satisfiability.
[9]
Manouchehr Zaker,et al.
Results on the Grundy chromatic number of graphs
,
2006,
Discret. Math..
[10]
Manouchehr Zaker,et al.
Grundy chromatic number of the complement of bipartite graphs
,
2005,
Australas. J Comb..
[11]
Mitre Costa Dourado,et al.
Connected Greedy Colourings
,
2014,
LATIN.
[12]
Frédéric Havet,et al.
On the Grundy and b-Chromatic Numbers of a Graph
,
2013,
Algorithmica.
[13]
András Gyárfás,et al.
On-line and first fit colorings of graphs
,
1988,
J. Graph Theory.
[14]
Daniel Brélaz,et al.
New methods to color the vertices of a graph
,
1979,
CACM.
[15]
J. Culberson.
Iterated Greedy Graph Coloring and the Difficulty Landscape
,
1992
.
[16]
David Manlove,et al.
The b-chromatic Number of a Graph
,
1999,
Discret. Appl. Math..
[17]
Olivier Togni,et al.
A characterization of b-chromatic and partial
,
2018
.