Towards standard testbeds for numerical relativity
暂无分享,去创建一个
Gabrielle Allen | Scott H. Hawley | Edward Seidel | Erik Schnetter | Tom Goodale | Miguel Alcubierre | Ian Hawke | Ryoji Takahashi | David Rideout | Jeffrey Winicour | Bela Szilagyi | Carles Bona | Hisa-aki Shinkai | Deirdre Shoemaker | Michael Koppitz | Sascha Husa | David Fiske | D. Shoemaker | E. Seidel | S. Husa | B. Szilágyi | H. Shinkai | E. Schnetter | G. Allen | T. Goodale | M. Alcubierre | J. Winicour | D. Rideout | R. Takahashi | M. Koppitz | D. Pollney | C. Lechner | I. Hawke | C. Bona | M. Salgado | F. S. Guzmán | David R. Fiske | Denis Pollney | F. Siddharta Guzman | Christiane Lechner | Marcelo Salgado
[1] Lee Samuel Finn,et al. Frontiers in numerical relativity , 2011 .
[2] S. Shapiro,et al. Numerical relativity and compact binaries , 2002, gr-qc/0211028.
[3] M. Alcubierre. Hyperbolic slicings of spacetime: singularity avoidance and gauge shocks , 2002, gr-qc/0210050.
[4] Thomas Jurke. On future asymptotics of polarized Gowdy 3-models , 2002, gr-qc/0210022.
[5] S. Shapiro,et al. Improved numerical stability of stationary black hole evolution calculations , 2002, gr-qc/0209066.
[6] O. Sarbach,et al. Convergence and stability in numerical relativity , 2002, gr-qc/0207018.
[7] E. Seidel,et al. Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.
[8] O. Sarbach,et al. Stability properties of a formulation of Einstein's equations , 2002, gr-qc/0205073.
[9] S. Husa. Problems and Successes in the Numerical Approach to the Conformal Field Equations , 2002, gr-qc/0204043.
[10] H. Shinkai,et al. Advantages of a modified ADM formulation: Constraint propagation analysis of the Baumgarte-Shapiro-Shibata-Nakamura system , 2002, gr-qc/0204002.
[11] D. Shoemaker,et al. Numerical stability of a new conformal-traceless 3 + 1 formulation of the einstein equation , 2002, gr-qc/0202105.
[12] M. Alcubierre,et al. TESTING THE CACTUS CODE ON EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATIONS , 2001, gr-qc/0110031.
[13] D. Garfinkle. Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.
[14] H. Shinkai,et al. Adjusted ADM systems and their expected stability properties: constraint propagation analysis in Schwarzschild spacetime , 2001, gr-qc/0110008.
[15] Y. Zlochower,et al. Retarded radiation from colliding black holes in the close limit , 2001, gr-qc/0108075.
[16] Lawrence E. Kidder,et al. Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.
[17] D. Shoemaker,et al. A cure for unstable numerical evolutions of single black holes: adjusting the standard ADM equations , 2001, gr-qc/0103099.
[18] E. Seidel,et al. 3D grazing collision of two black holes. , 2000, Physical review letters.
[19] Peter Huebner. From Now to Timelike Infinity on a Finite Grid , 2000, gr-qc/0010069.
[20] M. Alcubierre,et al. Simple excision of a black hole in 3 + 1 numerical relativity , 2000, gr-qc/0008067.
[21] H. Shinkai,et al. Hyperbolic formulations and numerical relativity: II. asymptotically constrained systems of Einstein equations , 2000, gr-qc/0007034.
[22] Michael T. Anderson. On Long-Time Evolution in General Relativity¶and Geometrization of 3-Manifolds , 2000, gr-qc/0006042.
[23] H. Shinkai,et al. Hyperbolic formulations and numerical relativity: experiments using Ashtekar's connection variables , 2000, gr-qc/0005003.
[24] E. Seidel,et al. Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.
[25] B. Szilágyi,et al. Cauchy boundaries in linearized gravitational theory , 1999, gr-qc/9912030.
[26] E. Seidel,et al. Nonlinear and perturbative evolution of distorted Black holes: Odd-parity modes , 1999, gr-qc/9911017.
[27] S. Teukolsky. Stability of the iterated Crank-Nicholson method in numerical relativity , 1999, gr-qc/9909026.
[28] E. Seidel,et al. Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity. , 1999, gr-qc/9908079.
[29] H. Shinkai,et al. Asymptotically constrained and real-valued system based on Ashtekar's variables , 1999, gr-qc/9906062.
[30] E. Seidel,et al. Gravitational collapse of gravitational waves in 3D numerical relativity , 1999, gr-qc/9904013.
[31] Peter Huebner. A scheme to numerically evolve data for the conformal Einstein equation , 1999, gr-qc/9903088.
[32] A. Arbona,et al. Robust evolution system for numerical relativity , 1999, gr-qc/9902053.
[33] S. Shapiro,et al. On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.
[34] Oscar A. Reula,et al. Einstein’s equations with asymptotically stable constraint propagation , 1998, Journal of Mathematical Physics.
[35] H. Shinkai,et al. Symmetric Hyperbolic System in the Ashtekar Formulation , 1998, gr-qc/9803077.
[36] Keith Watt,et al. Stable 3-level leapfrog integration in numerical relativity , 1998, gr-qc/9801110.
[37] S. Shapiro,et al. Waveform propagation in black hole spacetimes: Evaluating the quality of numerical solutions , 1997, gr-qc/9712037.
[38] M. Parashar,et al. GRAVITATIONAL WAVE EXTRACTION AND OUTER BOUNDARY CONDITIONS BY PERTURBATIVE MATCHING , 1997, gr-qc/9709082.
[39] E. Seidel,et al. Numerical evolution of dynamic 3D black holes: Extracting waves. , 1997, gr-qc/9709075.
[40] E. Seidel,et al. First order hyperbolic formalism for numerical relativity , 1997, gr-qc/9709016.
[41] L. Lehner,et al. High powered gravitational news , 1997, gr-qc/9708065.
[42] M. Putten. Numerical integration of nonlinear wave equations for general relativity , 1997, gr-qc/9701019.
[43] Edward Seidel,et al. Numerical relativity and black holes , 1996 .
[44] E. Seidel,et al. Dynamics of Gravitational Waves in 3D: Formulations, Methods, and Tests , 1996, gr-qc/9610057.
[45] M. Alcubierre. Appearance of coordinate shocks in hyperbolic formalisms of general relativity , 1996, gr-qc/9609015.
[46] Brügmann. Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions. , 1996, Physical review. D, Particles and fields.
[47] Peter P. Edwards,et al. The changing phase of liquid metals , 1996 .
[48] Seidel,et al. Near-linear regime of gravitational waves in numerical relativity. , 1996, Physical review. D, Particles and fields.
[49] Nakamura,et al. Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.
[50] Price,et al. Head-on collision of two black holes: Comparison of different approaches. , 1995, Physical review. D, Particles and fields.
[51] M. Putten,et al. Nonlinear wave equations for relativity. , 1995, Physical review. D, Particles and fields.
[52] Seidel,et al. Three-dimensional numerical relativity: The evolution of black holes. , 1995, Physical review. D, Particles and fields.
[53] Seidel,et al. New formalism for numerical relativity. , 1994, Physical review letters.
[54] Brandt,et al. Evolution of distorted rotating black holes. II. Dynamics and analysis. , 1994, Physical review. D, Particles and fields.
[55] Seidel,et al. Head-on collision of two equal mass black holes. , 1994, Physical review. D, Particles and fields.
[56] S. Klainerman,et al. The Global Nonlinear Stability of the Minkowski Space. , 1994 .
[57] Seidel,et al. Collision of two black holes. , 1993, Physical review letters.
[58] Choptuik. Consistency of finite-difference solutions of Einstein's equations. , 1991, Physical review. D, Particles and fields.
[59] H. Friedrich. On the existence ofn-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure , 1986 .
[60] H. Friedrich. The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[61] H. Friedrich. On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[62] Jacques E. Romain,et al. Gravitation: An Introduction to Current Research , 1963 .
[63] L. M. González-Romero,et al. Current Trends in Relativistic Astrophysics , 2003 .
[64] H. Friedrich,et al. The conformal structure of space-time : geometry, analysis, numerics , 2002 .
[65] Jack Dongarra,et al. Vector and Parallel Processing — VECPAR 2000 , 2001, Lecture Notes in Computer Science.
[66] Submitted to Phys.Rev.D. , 1994 .
[67] Ken-ichi Oohara,et al. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .
[68] S. Yau,et al. On the structure of manifolds with positive scalar curvature , 1979 .
[69] Larry Smarr,et al. Sources of gravitational radiation , 1979 .
[70] R. Gowdy. Gravitational waves in closed universes , 1971 .
[71] In Gravitation: an introduction to current research , 1962 .