Towards standard testbeds for numerical relativity

In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.

[1]  Lee Samuel Finn,et al.  Frontiers in numerical relativity , 2011 .

[2]  S. Shapiro,et al.  Numerical relativity and compact binaries , 2002, gr-qc/0211028.

[3]  M. Alcubierre Hyperbolic slicings of spacetime: singularity avoidance and gauge shocks , 2002, gr-qc/0210050.

[4]  Thomas Jurke On future asymptotics of polarized Gowdy 3-models , 2002, gr-qc/0210022.

[5]  S. Shapiro,et al.  Improved numerical stability of stationary black hole evolution calculations , 2002, gr-qc/0209066.

[6]  O. Sarbach,et al.  Convergence and stability in numerical relativity , 2002, gr-qc/0207018.

[7]  E. Seidel,et al.  Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.

[8]  O. Sarbach,et al.  Stability properties of a formulation of Einstein's equations , 2002, gr-qc/0205073.

[9]  S. Husa Problems and Successes in the Numerical Approach to the Conformal Field Equations , 2002, gr-qc/0204043.

[10]  H. Shinkai,et al.  Advantages of a modified ADM formulation: Constraint propagation analysis of the Baumgarte-Shapiro-Shibata-Nakamura system , 2002, gr-qc/0204002.

[11]  D. Shoemaker,et al.  Numerical stability of a new conformal-traceless 3 + 1 formulation of the einstein equation , 2002, gr-qc/0202105.

[12]  M. Alcubierre,et al.  TESTING THE CACTUS CODE ON EXACT SOLUTIONS OF THE EINSTEIN FIELD EQUATIONS , 2001, gr-qc/0110031.

[13]  D. Garfinkle Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.

[14]  H. Shinkai,et al.  Adjusted ADM systems and their expected stability properties: constraint propagation analysis in Schwarzschild spacetime , 2001, gr-qc/0110008.

[15]  Y. Zlochower,et al.  Retarded radiation from colliding black holes in the close limit , 2001, gr-qc/0108075.

[16]  Lawrence E. Kidder,et al.  Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations , 2001, gr-qc/0105031.

[17]  D. Shoemaker,et al.  A cure for unstable numerical evolutions of single black holes: adjusting the standard ADM equations , 2001, gr-qc/0103099.

[18]  E. Seidel,et al.  3D grazing collision of two black holes. , 2000, Physical review letters.

[19]  Peter Huebner From Now to Timelike Infinity on a Finite Grid , 2000, gr-qc/0010069.

[20]  M. Alcubierre,et al.  Simple excision of a black hole in 3 + 1 numerical relativity , 2000, gr-qc/0008067.

[21]  H. Shinkai,et al.  Hyperbolic formulations and numerical relativity: II. asymptotically constrained systems of Einstein equations , 2000, gr-qc/0007034.

[22]  Michael T. Anderson On Long-Time Evolution in General Relativity¶and Geometrization of 3-Manifolds , 2000, gr-qc/0006042.

[23]  H. Shinkai,et al.  Hyperbolic formulations and numerical relativity: experiments using Ashtekar's connection variables , 2000, gr-qc/0005003.

[24]  E. Seidel,et al.  Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments , 2000, gr-qc/0003071.

[25]  B. Szilágyi,et al.  Cauchy boundaries in linearized gravitational theory , 1999, gr-qc/9912030.

[26]  E. Seidel,et al.  Nonlinear and perturbative evolution of distorted Black holes: Odd-parity modes , 1999, gr-qc/9911017.

[27]  S. Teukolsky Stability of the iterated Crank-Nicholson method in numerical relativity , 1999, gr-qc/9909026.

[28]  E. Seidel,et al.  Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity. , 1999, gr-qc/9908079.

[29]  H. Shinkai,et al.  Asymptotically constrained and real-valued system based on Ashtekar's variables , 1999, gr-qc/9906062.

[30]  E. Seidel,et al.  Gravitational collapse of gravitational waves in 3D numerical relativity , 1999, gr-qc/9904013.

[31]  Peter Huebner A scheme to numerically evolve data for the conformal Einstein equation , 1999, gr-qc/9903088.

[32]  A. Arbona,et al.  Robust evolution system for numerical relativity , 1999, gr-qc/9902053.

[33]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[34]  Oscar A. Reula,et al.  Einstein’s equations with asymptotically stable constraint propagation , 1998, Journal of Mathematical Physics.

[35]  H. Shinkai,et al.  Symmetric Hyperbolic System in the Ashtekar Formulation , 1998, gr-qc/9803077.

[36]  Keith Watt,et al.  Stable 3-level leapfrog integration in numerical relativity , 1998, gr-qc/9801110.

[37]  S. Shapiro,et al.  Waveform propagation in black hole spacetimes: Evaluating the quality of numerical solutions , 1997, gr-qc/9712037.

[38]  M. Parashar,et al.  GRAVITATIONAL WAVE EXTRACTION AND OUTER BOUNDARY CONDITIONS BY PERTURBATIVE MATCHING , 1997, gr-qc/9709082.

[39]  E. Seidel,et al.  Numerical evolution of dynamic 3D black holes: Extracting waves. , 1997, gr-qc/9709075.

[40]  E. Seidel,et al.  First order hyperbolic formalism for numerical relativity , 1997, gr-qc/9709016.

[41]  L. Lehner,et al.  High powered gravitational news , 1997, gr-qc/9708065.

[42]  M. Putten Numerical integration of nonlinear wave equations for general relativity , 1997, gr-qc/9701019.

[43]  Edward Seidel,et al.  Numerical relativity and black holes , 1996 .

[44]  E. Seidel,et al.  Dynamics of Gravitational Waves in 3D: Formulations, Methods, and Tests , 1996, gr-qc/9610057.

[45]  M. Alcubierre Appearance of coordinate shocks in hyperbolic formalisms of general relativity , 1996, gr-qc/9609015.

[46]  Brügmann Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions. , 1996, Physical review. D, Particles and fields.

[47]  Peter P. Edwards,et al.  The changing phase of liquid metals , 1996 .

[48]  Seidel,et al.  Near-linear regime of gravitational waves in numerical relativity. , 1996, Physical review. D, Particles and fields.

[49]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[50]  Price,et al.  Head-on collision of two black holes: Comparison of different approaches. , 1995, Physical review. D, Particles and fields.

[51]  M. Putten,et al.  Nonlinear wave equations for relativity. , 1995, Physical review. D, Particles and fields.

[52]  Seidel,et al.  Three-dimensional numerical relativity: The evolution of black holes. , 1995, Physical review. D, Particles and fields.

[53]  Seidel,et al.  New formalism for numerical relativity. , 1994, Physical review letters.

[54]  Brandt,et al.  Evolution of distorted rotating black holes. II. Dynamics and analysis. , 1994, Physical review. D, Particles and fields.

[55]  Seidel,et al.  Head-on collision of two equal mass black holes. , 1994, Physical review. D, Particles and fields.

[56]  S. Klainerman,et al.  The Global Nonlinear Stability of the Minkowski Space. , 1994 .

[57]  Seidel,et al.  Collision of two black holes. , 1993, Physical review letters.

[58]  Choptuik Consistency of finite-difference solutions of Einstein's equations. , 1991, Physical review. D, Particles and fields.

[59]  H. Friedrich On the existence ofn-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure , 1986 .

[60]  H. Friedrich The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[61]  H. Friedrich On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[62]  Jacques E. Romain,et al.  Gravitation: An Introduction to Current Research , 1963 .

[63]  L. M. González-Romero,et al.  Current Trends in Relativistic Astrophysics , 2003 .

[64]  H. Friedrich,et al.  The conformal structure of space-time : geometry, analysis, numerics , 2002 .

[65]  Jack Dongarra,et al.  Vector and Parallel Processing — VECPAR 2000 , 2001, Lecture Notes in Computer Science.

[66]  Submitted to Phys.Rev.D. , 1994 .

[67]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[68]  S. Yau,et al.  On the structure of manifolds with positive scalar curvature , 1979 .

[69]  Larry Smarr,et al.  Sources of gravitational radiation , 1979 .

[70]  R. Gowdy Gravitational waves in closed universes , 1971 .

[71]  In Gravitation: an introduction to current research , 1962 .