1. Morton DL, Cochran AJ, Thompson JF, et al. Sentinel node biopsy for early-stage melanoma: accuracy and morbidity in MSLT-I, an international multicenter trial. Ann Surg 2005; 242: 302-11, discussion: 11-3. 2. Nakamura Y, Fujisawa Y, Nakamura Y, et al. Improvement of the sentinel lymph node detection rate of cervical sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green in head and neck skin cancer. J Dermatol 2013; 40: 453-7. 3. Namikawa K, Yamazaki N. Sentinel lymph node biopsy guided by indocyanine green fluorescence for cutaneous melanoma. Eur J Dermatol 2011; 21: 184-90. 4. Brouwer OR, Klop WM, Buckle T, et al. Feasibility of sentinel node biopsy in head and neck melanoma using a hybrid radioactive and fluorescent tracer. Ann Surg Oncol 2012; 19: 1988-94. 5. Stoffels I, von der Stuck H, Boy C, et al. Indocyanine green fluorescence-guided sentinel lymph node biopsy in dermato-oncology. J Dtsch Dermatol Ges 2012; 10: 51-7. 6. Korn JM, Tellez-Diaz A, Bartz-Kurycki M, Gastman B. Indocyanine green SPY elite-assisted sentinel lymph node biopsy in cutaneous melanoma. Plast Reconstr Surg 2014; 133: 914-22. 7. Stoffels I, Leyh J, Poppel T, Schadendorf D, Klode J. Evaluation of a radioactive and fluorescent hybrid tracer for sentinel lymph node biopsy in head and neck malignancies: prospective randomized clinical trial to compare ICG-(99m)Tc-nanocolloid hybrid tracer versus (99m)Tc-nanocolloid. Eur J Nucl Med Mol Imaging 2015; 42: 1631-8. 8. van der Vorst JR, Schaafsma BE, Verbeek FP, et al. Dose optimization for near-infrared fluorescence sentinel lymph node mapping in patients with melanoma. Br J Dermatol 2013; 168: 93-8. 9. Toh U, Iwakuma N, Mishima M, Okabe M, Nakagawa S, Akagi Y. Navigation surgery for intraoperative sentinel lymph node detection using Indocyanine green (ICG) fluorescence real-time imaging in breast cancer. Breast Cancer Res Treat 2015; 153: 337-44.
[1]
A. Desmoulière,et al.
Fibroblasts and myofibroblasts in wound healing
,
2014,
Clinical, cosmetic and investigational dermatology.
[2]
C. Bodemer,et al.
Germline mosaicism in keratitis–ichthyosis–deafness syndrome: pre‐natal diagnosis in a familial lethal form
,
2010,
Clinical genetics.
[3]
G. Ho,et al.
Tetratricopeptide repeat domain 9A is an interacting protein for tropomyosin Tm5NM-1
,
2008,
BMC Cancer.
[4]
V. Lin,et al.
Identification of tetratricopeptide repeat domain 9, a hormonally regulated protein.
,
2006,
Biochemical and biophysical research communications.
[5]
Nicole S. Bryce,et al.
Targeting of a tropomyosin isoform to short microfilaments associated with the Golgi complex.
,
2003,
Molecular biology of the cell.
[6]
A. Kenneson,et al.
GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: A HuGE review
,
2002,
Genetics in Medicine.
[7]
V. Kähäri.
Activation of dermal connective tissue in scleroderma.
,
1993,
Annals of medicine.
[8]
A. Norins,et al.
The keratitis, ichthyosis, and deafness (KID) syndrome.
,
1981,
Archives of dermatology.
[9]
G. Tavartkiladze,et al.
[Diagnostics of keratitis-ichthyosis-deafness syndrome (KID- syndrome)].
,
2012,
Vestnik otorinolaringologii.