RECM: Relational evidential c-means algorithm

A new clustering algorithm for proximity data, called RECM (relational evidential c-means) is presented. This algorithm generates a credal partition, a new clustering structure based on the theory of belief functions, which extends the existing concepts of hard, fuzzy and possibilistic partitions. Two algorithms, EVCLUS (Evidential Clustering) and ECM (evidential c-means) were previously available to derive credal partitions from data. EVCLUS was designed to handle proximity data, whereas ECM is a direct extension of fuzzy clustering algorithms for vectorial data. In this article, the relational version of ECM is introduced. It is compared to EVCLUS using various datasets. It is shown that RECM provides similar results to those given by EVCLUS. However, the optimization procedure of RECM, based on an alternate minimization scheme, is computationally much more efficient than the gradient-based procedure used in EVCLUS.

[1]  Thierry Denoeux,et al.  Clustering interval-valued proximity data using belief functions , 2004, Pattern Recognit. Lett..

[2]  Trevor F. Cox,et al.  Metric multidimensional scaling , 2000 .

[3]  Philippe Smets,et al.  Decision making in the TBM: the necessity of the pignistic transformation , 2005, Int. J. Approx. Reason..

[4]  Klaus-Robert Müller,et al.  Feature Discovery in Non-Metric Pairwise Data , 2004, J. Mach. Learn. Res..

[5]  James C. Bezdek,et al.  Nerf c-means: Non-Euclidean relational fuzzy clustering , 1994, Pattern Recognit..

[6]  Thomas A. Runkler,et al.  Web mining with relational clustering , 2003, Int. J. Approx. Reason..

[7]  Philippe Smets,et al.  Classification Using Belief Functions: Relationship Between Case-Based and Model-Based Approaches , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[8]  R. Yager,et al.  Intelligent Systems for Information Processing: From Representation to Applications , 2003 .

[9]  Klaus Obermayer,et al.  Classi cation on Pairwise Proximity , 2007 .

[10]  Chitta Baral,et al.  Fuzzy C-means Clustering with Prior Biological Knowledge , 2022 .

[11]  S. Sen,et al.  Clustering of relational data containing noise and outliers , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[12]  T. Denœux,et al.  Clustering of proximity data using belief functions , 2003 .

[13]  M. P. Windham Numerical classification of proximity data with assignment measures , 1985 .

[14]  Thierry Denoeux,et al.  ECM: An evidential version of the fuzzy c , 2008, Pattern Recognit..

[15]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[16]  Anupam Joshi,et al.  Low-complexity fuzzy relational clustering algorithms for Web mining , 2001, IEEE Trans. Fuzzy Syst..

[17]  Thierry Denoeux,et al.  Pairwise classifier combination using belief functions , 2007, Pattern Recognit. Lett..

[18]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[19]  James C. Bezdek,et al.  Relational duals of the c-means clustering algorithms , 1989, Pattern Recognit..

[20]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[21]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  M. Roubens Pattern classification problems and fuzzy sets , 1978 .

[23]  James M. Keller,et al.  Fuzzy Models and Algorithms for Pattern Recognition and Image Processing , 1999 .

[24]  Thierry Denoeux,et al.  A k-nearest neighbor classification rule based on Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..

[25]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[26]  Mark A. Girolami,et al.  Mercer kernel-based clustering in feature space , 2002, IEEE Trans. Neural Networks.

[27]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[29]  Ana L. N. Fred,et al.  Combining multiple clusterings using evidence accumulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[31]  Thierry Denoeux,et al.  EVCLUS: evidential clustering of proximity data , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[32]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[33]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.