Author ' s personal copy Connective fi eld modeling

a Laboratory for Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands b BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands c Department of Psychology, University of Minnesota, Minneapolis, MN, United States d Department of Psychology, Stanford University, Stanford, CA, United States e Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, The Netherlands

[1]  D. Sholl Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953, Journal of anatomy.

[2]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[3]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[4]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[5]  Terrence J. Sejnowski,et al.  Network model of shape-from-shading: neural function arises from both receptive and projective fields , 1988, Nature.

[6]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[8]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[9]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[10]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[11]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[12]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[13]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[14]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[15]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[16]  Ravi S. Menon,et al.  On the characteristics of functional magnetic resonance imaging of the brain. , 1998, Annual review of biophysics and biomolecular structure.

[17]  A. Dale,et al.  The representation of the ipsilateral visual field in human cerebral cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[19]  M E Meyerand,et al.  Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. , 2000, Magnetic resonance imaging.

[20]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[21]  D J Heeger,et al.  Robust multiresolution alignment of MRI brain volumes , 2000, Magnetic resonance in medicine.

[22]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[23]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[24]  Karl J. Friston,et al.  Multivariate Autoregressive Modelling of fMRI time series , 2003 .

[25]  Rainer Goebel,et al.  Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. , 2003, Magnetic resonance imaging.

[26]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[27]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[28]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[29]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[30]  Peter A. Bandettini,et al.  Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI , 2006, NeuroImage.

[31]  Junjie Liu,et al.  Laminar profiles of functional activity in the human brain , 2007, NeuroImage.

[32]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[33]  D. Pelli,et al.  The uncrowded window of object recognition , 2008, Nature Neuroscience.

[34]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[35]  D. Pelli Crowding: a cortical constraint on object recognition , 2008, Current Opinion in Neurobiology.

[36]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[37]  B. C. Motter Central V4 Receptive Fields Are Scaled by the V1 Cortical Magnification and Correspond to a Constant-Sized Sampling of the V1 Surface , 2009, The Journal of Neuroscience.

[38]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[39]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[40]  Hironori Kumano,et al.  The spatial profile of macaque MT neurons is consistent with Gaussian sampling of logarithmically coordinated visual representation. , 2010, Journal of neurophysiology.

[41]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[42]  B. Wandell,et al.  Cortical Maps and White Matter Tracts following Long Period of Visual Deprivation and Retinal Image Restoration , 2010, Neuron.

[43]  D. Samuel Schwarzkopf,et al.  The surface area of human V1 predicts the subjective experience of object size , 2010, Nature Neuroscience.

[44]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[45]  Frans W Cornelissen,et al.  Large-scale remapping of visual cortex is absent in adult humans with macular degeneration , 2011, Nature Neuroscience.

[46]  S. Dumoulin,et al.  The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture , 2011, The Journal of Neuroscience.

[47]  Jakob Heinzle,et al.  Topographically specific functional connectivity between visual field maps in the human brain , 2011, NeuroImage.

[48]  Aki Vehtari,et al.  Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER , 2012, NeuroImage.

[49]  S. Dumoulin,et al.  Modeling center-surround configurations in population receptive fields using fMRI. , 2012, Journal of vision.

[50]  Antony B. Morland,et al.  Population Receptive Field Dynamics in Human Visual Cortex , 2012, PloS one.