Comments on "An Asymptotic Modal Observer For Linear Autonomous Time Lag Systems

This note first shows that the proof of Theorem1 in the above- mentioned paper is incomplete and that the state observer scheme results in steady-state error. Alternatively, a memoryless state observer for linear time-delay systems is provided.

[1]  P. Falb,et al.  Decoupling in the design and synthesis of multivariable control systems , 1967, IEEE Transactions on Automatic Control.

[2]  Elmer G. Gilbert,et al.  The Decoupling of Multivariable Systems by State Feedback , 1969 .

[3]  S. Tzafestas,et al.  On the decoupling of multivariable control systems with time delays , 1973 .

[4]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[5]  A. Stephen Morse Ring models for delay-differential systems , 1976, Autom..

[6]  Eduardo Sontag Linear Systems over Commutative Rings. A Survey , 1976 .

[7]  J. Hale Theory of Functional Differential Equations , 1977 .

[8]  Z. Rekasius,et al.  Decoupling without prediction of systems with delays , 1977 .

[9]  E. Kamen Lectures on algebraic system theory: Linear systems over rings , 1978 .

[10]  G. Weiss,et al.  Representation theorems for holomorphic and harmonic functions in L[P] . The molecular characterization of certain Hardy spaces , 1980 .

[11]  J. Descusse,et al.  Solution to Morgan's problem , 1988 .

[12]  Rabah Rabah,et al.  Structure at infinity, model matching and disturbance rejection for linear systems with delays , 1993, Kybernetika.

[13]  Lcgjm Luc Habets,et al.  Algebraic and computational aspects of time-delay systems , 1994 .

[14]  Jesus Leyva-Ramos,et al.  An asymptotic modal observer for linear autonomous time lag systems , 1995, IEEE Trans. Autom. Control..

[15]  Olivier Sename,et al.  Decoupling without prediction of linear systems with delays: a structural approach , 1995 .