A Fast Block-Greedy Algorithm for Quasi-optimal Meshless Trial Subspace Selection
暂无分享,去创建一个
[1] T. Wei,et al. An adaptive greedy technique for inverse boundary determination problem , 2010, J. Comput. Phys..
[2] Robert Schaback,et al. Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..
[3] Robert Schaback,et al. An improved subspace selection algorithm for meshless collocation methods , 2009 .
[4] Tobin A. Driscoll,et al. Computing eigenmodes ofelliptic operators using radial basis functions , 2004 .
[5] Wen Chen,et al. The Localized RBFs Collocation Methods for Solving High Dimensional PDEs , 2013 .
[6] R. Schaback,et al. Results on meshless collocation techniques , 2006 .
[7] Robert Schaback,et al. On unsymmetric collocation by radial basis functions , 2001, Appl. Math. Comput..
[8] C.M.C. Roque,et al. Numerical experiments on optimal shape parameters for radial basis functions , 2009 .
[9] J. Wertz,et al. The role of the multiquadric shape parameters in solving elliptic partial differential equations , 2006, Comput. Math. Appl..
[10] Nicholas J. Highamy. Estimating the matrix p-norm , 1992 .
[11] Robert Schaback,et al. On convergent numerical algorithms for unsymmetric collocation , 2009, Adv. Comput. Math..
[12] C. Loan. On estimating the condition of eigenvalues and eigenvectors , 1987 .
[13] Jürgen Geiser,et al. Numerical solution to time-dependent 4D inviscid Burgers' equations , 2013 .
[14] Robert Schaback,et al. An Adaptive Greedy Algorithm for Solving Large RBF Collocation Problems , 2004, Numerical Algorithms.
[15] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[16] N. Higham. Estimating the matrixp-norm , 1992 .
[17] D. E. Knuth. Semi-optimal bases for linear dependencies , 1985 .
[18] R. E. Carlson,et al. Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .
[19] Gregory E. Fasshauer,et al. On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.
[20] Tobin A. Driscoll,et al. Computing Eigenmodes of Elliptic Operators Using Radial Basis Functions , 2003 .
[21] Hamed Rabiei,et al. On the new variable shape parameter strategies for radial basis functions , 2015 .
[22] L. Ling,et al. Solving moving-boundary problems with the wavelet adaptive radial basis functions method , 2013 .
[23] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[24] Gregory E. Fasshauer,et al. Kernel-based Approximation Methods using MATLAB , 2015, Interdisciplinary Mathematical Sciences.
[25] Leevan Ling,et al. An adaptive‐hybrid meshfree approximation method , 2012 .
[26] Nicholas J. Highham. A survey of condition number estimation for triangular matrices , 1987 .
[27] A. Cheng,et al. A comparison of efficiency and error convergence of multiquadric collocation method and finite element method , 2003 .
[28] C. Tsai,et al. The Golden Section Search Algorithm for Finding a Good Shape Parameter for Meshless Collocation Methods , 2010 .
[29] Gu Dun-he,et al. A NOTE ON A LOWER BOUND FOR THE SMALLEST SINGULAR VALUE , 1997 .
[30] Limin Zou,et al. A lower bound for the smallest singular value , 2012 .
[31] Miroslav Tuma,et al. On Incremental Condition Estimators in the 2-Norm , 2014, SIAM J. Matrix Anal. Appl..
[32] E. Kansa,et al. HKBU Institutional Repository , 2018 .
[33] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[34] Sven Hammarling,et al. Updating the QR factorization and the least squares problem , 2008 .
[35] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[36] R. Schaback. Adaptive Numerical Solution of MFS Systems , 2007 .
[37] Hermann Brunner,et al. Numerical simulations of 2D fractional subdiffusion problems , 2010, J. Comput. Phys..
[38] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[39] C.-S. Huang,et al. On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs , 2010 .
[40] Bengt Fornberg,et al. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..
[41] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[42] Elisabeth Larsson,et al. Stable computations with Gaussian radial basis functions in 2-D , 2009 .
[43] Michael J. McCourt,et al. Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..