The Ultraluminous State

We revisit the question of the nature of ultraluminous X-ray sources (ULXs) through a detailed investigation of their spectral shape, using the h ighest quality X-ray data available in the XMM-Newton public archives ( � 10, 000 counts in their EPIC spectrum). We confirm that simple spectral models commonly used for the analys is and interpretation of ULXs (power-law continuum and multi-colour disc blackbody models) are inadequate in the face of such high quality data. Instead we find two near ubiquitous features in the spectrum: a soft excess and a roll-over in the spectrum at energies above 3 keV. We investigate a range of more physical models to describe these data. Slim discs which include radiation trapping (approximated by a p-free disc model) do not adequately fit the data, and several o bjects give unphysically high disc temperatures (kTin > 3 keV). Instead, disc plus Comptonised corona models fit the data well, but the derived corona is cool, and op tically thick (� � 5 30). This is unlike the � � 1 coronae seen in Galactic binaries, ruling out models where ULXs are powered by sub-Eddington accretion onto an intermediate mass black hole despite many objects having apparently cool disc temperatures. We argue that these observed disc temperatures are not a good indicator of the black hole mass as the powerful, optically thick corona drains energy from the inner disc, and obscures it. We estimate the intrinsic (corona-less) disc temperature, and demonstrate that in most cases it lies in th e regime of stellar mass black holes. These objects have spectra which range from those similar to the highest mass accretion rate states in Galactic binaries (a single peak at 2‐3 ke V), to those which clearly have two peaks, one at energies below 1 keV (from the outer, unComptonised disc) and one above 3 keV (from the Comptonised, inner disc). However, a few ULXs have a significantly cooler corrected disc temperature; we suggest that these are the most extreme stellar mass black hole accretors, in which a massive wind completely envelopes the inner disc regions, creating a cool photosphere. We conclude that ULXs provide us with an observational template for the transition between Eddington and super-Eddington accretion flows, with the latter occupying a new ultraluminousaccretion state.

[1]  A. Sa̧dowski,et al.  A Comprehensive Study of Young Black Hole Populations , 2004, astro-ph/0404068.

[2]  Ronald A. Remillard,et al.  in Compact Stellar X - ray Sources , 2004 .

[3]  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[4]  Andrew M. Read,et al.  ROSAT PSPC observations of nearby spiral galaxies — I. The data , 1997 .

[5]  Patrick Seitzer,et al.  The Optical Counterpart of an Ultraluminous X-Ray Source in NGC 5204 , 2004, astro-ph/0501305.

[6]  R. S. Warwick,et al.  A ROSAT High Resolution Imager survey of bright nearby galaxies , 2000 .

[7]  Super‐Eddington accretion discs around Kerr black holes , 1998, astro-ph/9802129.

[8]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[9]  S. Mineshige,et al.  Modified Slim-Disk Model Based on Radiation-Hydrodynamic Simulation Data: The Conflict Between Outflow and Photon Trapping , 2009, 0904.4598.

[10]  V. Kalogera,et al.  Theoretical Black Hole Mass Distributions , 1999, astro-ph/9911312.

[11]  Juri Poutanen,et al.  Supercritically accreting stellar mass black holes as ultraluminous X-ray sources , 2006, astro-ph/0609274.

[12]  A. J. Levan,et al.  New Hubble Space Telescope imaging of the counterparts to six ultraluminous X-ray sources , 2008, 0803.4470.

[13]  Simon Portegies Zwart,et al.  Intermediate mass black holes in accreting binaries: formation, evolution and observational appearance , 2004, astro-ph/0408402.

[14]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[15]  T. Roberts,et al.  Testing the Paradigm that Ultraluminous X-Ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes , 2008, 0807.1547.

[16]  Robert D. Gehrz,et al.  On Extending the Mass-Metallicity Relation of Galaxies by 2.5 Decades in Stellar Mass , 2006, astro-ph/0605036.

[17]  R. E. Griffiths,et al.  Quasi-periodic Oscillations and Strongly Comptonized X-Ray Emission from Holmberg IX X-1 , 2006, astro-ph/0602472.

[18]  R. S. Warwick,et al.  XMM-Newton reveals a dipping black-hole X-ray binary candidate in NGC 55 , 2004 .

[19]  K. P. Singh,et al.  A ROSAT PSPC Study of NGC 55. , 1997 .

[20]  T. Tsuru,et al.  Suzaku Observations of M 82 X-1 : Detection of a Curved Hard X-Ray Spectrum , 2008, 0809.3339.

[21]  Ray A. Lucas,et al.  Nonnuclear Hyper/Ultraluminous X-Ray Sources in the Starbursting Cartwheel Ring Galaxy , 2003, astro-ph/0309253.

[22]  J. N. Reeves,et al.  A deep XMM-Newton observation of the ultraluminous X-ray source HoII X-1 : the case against a 1000 solar mass black hole , 2005 .

[23]  T. P. Roberts,et al.  XMM–Newton observations of the brightest ultraluminous X-ray sources , 2006, astro-ph/0601651.

[24]  Puragra Guhathakurta,et al.  New distances to galaxies in the Centaurus A group , 2002 .

[25]  T. Mizuno,et al.  Accretion disk spectra of super-luminal jet sources and ultra-luminous compact X-ray sources in nearby spiral galaxies , 2001 .

[26]  A. C. Fabian,et al.  Revealing a cool accretion disk in the ultraluminous X-ray source M81 X-9 (Holmberg IX X-1): Evidence for an intermediate-mass black hole , 2004 .

[27]  Aya Kubota,et al.  Disc-corona energetics in the very high state of Galactic black holes , 2006 .

[28]  O. Blaes,et al.  Relativistic Accretion Disk Models of High-State Black Hole X-Ray Binary Spectra , 2004, astro-ph/0408590.

[29]  Shiro Ueno,et al.  Chandra observations of the luminous infrared galaxy NGC 3256 , 2001, astro-ph/0109198.

[30]  Philip Kaaret,et al.  Radio Emission from an Ultraluminous X-ray Source , 2003, Science.

[31]  J. McClintock,et al.  Compact Stellar X-Ray Sources: Black hole binaries , 2006 .

[32]  M. Gierliński,et al.  Black hole spin in GRS 1915+105 , 2006, astro-ph/0601540.

[33]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[34]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[35]  Feedback from Supercritical Disk Accretion Flows: Two-dimensional Radiation-Hydrodynamic Simulations of Stable and Unstable Disks with Radiatively Driven Outflows , 2007, astro-ph/0703103.

[36]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[37]  J. Wilms,et al.  Absorption Of X-rays In The Interstellar Medium , 2000, astro-ph/0008425.

[38]  A. Zezas,et al.  The Orbital Period of the Wolf-Rayet Binary IC 10 X-1: Dynamic Evidence that the Compact Object Is a Black Hole , 2007, 0709.2892.

[39]  K. Yamaoka,et al.  GRS 1915+105 IN “SOFT STATE”: NATURE OF ACCRETION DISK WIND AND ORIGIN OF X-RAY EMISSION , 2009, 0901.1982.

[40]  Martin P. Ward,et al.  The Seyfert AGN RX J0136.9–3510 and the spectral state of super Eddington accretion flows , 2009, 0903.4698.

[41]  I. Mirabel,et al.  A catalogue of ultraluminous X-ray sources in external galaxies , 2005 .

[42]  K. Ohsuga Two-dimensional Radiation-Hydrodynamic Model for Limit-Cycle Oscillations of Luminous Accretion Disks , 2005, astro-ph/0512178.

[43]  F. Takahara,et al.  On the Spectral Hardening Factor of the X-Ray Emission from Accretion Disks in Black Hole Candidates , 1995 .

[44]  R. Narayan,et al.  Multitemperature Blackbody Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations , 2004, astro-ph/0411583.

[45]  Ph. Podsiadlowski,et al.  Stellar-mass black hole binaries as ultraluminous X-ray sources , 2005 .

[46]  Jifeng Liu,et al.  An Ultraluminous Supersoft X-Ray Source in M81: An Intermediate-Mass Black Hole? , 2008, 0802.0507.

[47]  L. Winter,et al.  XMM-Newton Archival Study of the Ultraluminous X-Ray Population in Nearby Galaxies , 2005, astro-ph/0512480.

[48]  S. Mineshige,et al.  Galactic Black-Hole Candidates Shining at the Eddington Luminosity , 2000 .

[49]  Lev Titarchuk,et al.  GENERALIZED COMPTONIZATION MODELS AND APPLICATION TO THE RECENT HIGH-ENERGY OBSERVATIONS , 1994 .

[50]  Tsunefumi Mizuno,et al.  Slim-Disk Model for Ultraluminous X-Ray Sources , 2000, astro-ph/0011434.

[51]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[52]  E. Colbert,et al.  Intermediate - mass black holes , 2003 .

[53]  A. Saha,et al.  Cepheids and Long-Period Variables in IC 342 , 2002 .

[54]  R. S. Warwick,et al.  XMM–Newton EPIC observations of the ultraluminous X‐ray source NGC 5204 X‐1 , 2004 .

[55]  M. B. Davies,et al.  Ultraluminous X-Ray Sources in External Galaxies , 2001 .

[56]  Aya Kubota,et al.  The very high state accretion disc structure from the Galactic black hole transient XTE J1550 – 564 , 2003 .

[57]  C. Cunningham The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole , 1975 .

[58]  Andrew R. King Ultraluminous X-ray sources and star formation , 2004 .

[59]  N. Schurch,et al.  RE J1034+396: the origin of the soft X-ray excess and quasi-periodic oscillation , 2008, 0807.4847.

[60]  S. Rappaport,et al.  Models of Ultraluminous X-Ray Sources with Intermediate-Mass Black Holes , 2005, astro-ph/0511393.

[61]  A. Zdziarski,et al.  Black hole accretion disks with coronae , 1994 .

[62]  Aya Kubota,et al.  The Nature of Ultraluminous Compact X-Ray Sources in Nearby Spiral Galaxies , 2000, astro-ph/0001009.

[63]  A. R. King,et al.  The nature of SS433 and the ultraluminous X-ray sources , 2006, astro-ph/0604497.

[64]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[65]  G. Di Cocco,et al.  XMM–Newton observations of the ultraluminous nuclear X-ray source in M 33 , 2004 .

[66]  Koji Mukai,et al.  The Optical Counterpart of M101 ULX-1 , 2005 .

[67]  J. Bregman,et al.  Ultraluminous X-Ray Sources in Nearby Galaxies from ROSAT High Resolution Imager Observations I. Data Analysis , 2005, astro-ph/0501309.

[68]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[69]  M. Mori,et al.  Supercritical Accretion Flows around Black Holes: Two-dimensional, Radiation Pressure-dominated Disks with Photon Trapping , 2005, astro-ph/0504168.

[70]  E. Colbert,et al.  A Catalog of Candidate Intermediate-Luminosity X-Ray Objects , 2002, astro-ph/0204002.

[71]  Mitchell C. Begelman,et al.  Super-Eddington Fluxes from Thin Accretion Disks? , 2002, astro-ph/0203030.

[72]  Martin P. Ward,et al.  Chandra observations of five ultraluminous X-ray sources in nearby galaxies , 2004, astro-ph/0401306.

[73]  Philip Kaaret,et al.  XMM-Newton Observations of Ultraluminous X-Ray Sources in Nearby Galaxies , 2005, astro-ph/0507562.

[74]  Toshihiro Kawaguchi,et al.  Do Ultraluminous X-Ray Sources Really Contain Intermediate-Mass Black Holes? , 2006 .

[75]  T. P. Roberts,et al.  X-ray observations of ultraluminous X-ray sources , 2007, 0706.2562.

[76]  A. Zezas,et al.  The X-Ray Binary Population in M33. I. Source List and Luminosity Function , 2005 .

[77]  Aya Kubota,et al.  An optically thick inner corona geometry for the Very High State Galactic Black Hole XTE J1550-564 , 2005, astro-ph/0511030.

[78]  O. Blaes,et al.  Testing Accretion Disk Theory in Black Hole X-Ray Binaries , 2006, astro-ph/0602245.

[79]  H. Takabe,et al.  New Spectral State of Supercritical Accretion Flow with Comptonizing Outflow , 2009, 0904.4123.

[80]  T. Pannuti,et al.  Chandra-detected X-Ray Sources in the Nearby Spiral Scd Galaxy NGC 2403 , 2003 .

[81]  M. Gierliński,et al.  Reprocessing of X-rays in the outer accretion disc of the black hole binary XTE J1817-330 , 2008, 0808.4064.

[82]  J. M. Miller,et al.  X-Ray Spectroscopic Evidence for Intermediate-Mass Black Holes: Cool Accretion Disks in Two Ultraluminous X-Ray Sources , 2003 .

[83]  R. Soria Bridging the gap between stellar-mass black holes and ultraluminous X-ray sources , 2007, 0707.2049.

[84]  A. Zezas,et al.  Chandra Observations of “The Antennae” Galaxies (NGC 4038/9) , 2001 .

[85]  Elena Belsole,et al.  Proceedings of the X-ray Universe 2005, Vols 1 and 2 , 2006 .

[86]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[87]  A. Fabian,et al.  High‐Energy Processes in Accreting Black Holes , 1998 .

[88]  Alexei V. Filippenko,et al.  On IC 10 X-1, the Most Massive Known Stellar-Mass Black Hole , 2008, 0802.2716.

[89]  C. Done,et al.  Angular Momentum Transport in Accretion Disks and Its Implications for Spin Estimates in Black Hole Binaries , 2008, 0803.0584.

[90]  Douglas A. Swartz,et al.  The Ultraluminous X-Ray Source Population from the Chandra Archive of Galaxies , 2004, astro-ph/0405498.

[92]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[93]  J. Krolik,et al.  Detailed Atmosphere Model Fits to Disk-dominated ULX Spectra , 2008, 0803.3607.

[94]  M. Mori,et al.  Global Radiation-Magnetohydrodynamic Simulations of Black-Hole Accretion Flow and Outflow: Unified Model of Three States , 2009, 0903.5364.

[95]  Aya Kubota,et al.  Accretion Disk Spectra of Ultraluminous X-Ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources , 2003 .