Dissipative processes in interchange driven scrape-off layer turbulence

First principles expressions are given for the parameters governing collisional diffusion and parallel losses of mass, momentum and energy in tokamak scrape-off layer (SOL) plasmas. These dissipative, or damping, coefficients are based on neoclassical perpendicular transport (Pfirsch-Schluter diffusion) and classical parallel transport (sub-sonic advection and Spitzer-Harm diffusion). When numerical values derived from these expressions are used to compute damping coefficients for the edge-SOL electrostatic (ESEL) turbulence code, simulations correctly reproduce the radial profiles of particle density, n, and electron temperature, T-e, as well as statistical distributions and temporal correlations of particle density and flux density measured in Ohmic and L-mode plasmas on the TCV tokamak. Similarly, preliminary calculations agree reasonably well with radial profiles of T-e measured in Ohmic and L-mode plasmas on JET, although the particle density e-folding length is over-estimated by a factor of 3; this discrepancy is largely removed by reducing the parallel density gradient length by a factor measuring the poloidal asymmetry (ballooning) of filament displacements. These encouraging results suggest that turbulent SOL transport is driven by interchange motions, caused by unfavourable curvature and strong pressure gradients in the edge region, with the level of turbulence being influenced by neoclassical diffusion and parallel losses in the SOL region. Moreover, the curvature drive offers a viable mechanism for the origin of the B x del B-independent part of the parallel SOL flow measured on many tokamaks, including JET and TCV, with ESEL simulation predicting a parallel Mach number of approximate to 0.2 in JET Ohmic and L-mode plasmas, in fair agreement with Mach probe measurements.

[1]  X. Garbet,et al.  Theoretical understanding of turbulent transport in the SOL , 2003 .

[2]  M. Sugihara,et al.  Comparison of ITER performance predicted by semi-empirical and theory-based transport models , 2003 .

[3]  J. Contributors,et al.  Radial propagation of Type-I ELMs on JET , 2004 .

[4]  O E Garcia,et al.  Bursting and large-scale intermittency in turbulent convection with differential rotation. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  W. Fundamenski,et al.  Simple relations between scrape-off layer parameters of high recycling divertors. Part I: The relation between 'upstream' density and temperature , 2000 .

[6]  A. W. Trivelpiece,et al.  Introduction to Plasma Physics , 1976 .

[7]  S. Benkadda,et al.  Confinement and bursty transport in a flux-driven convection model with sheared flows , 2003 .

[8]  Y. Sarazin,et al.  Intermittent particle transport in two-dimensional edge turbulence , 1998 .

[9]  M. Endler Turbulent SOL Transport in Stellarators and Tokamaks , 1999 .

[10]  J. Huba NRL: Plasma Formulary , 2004 .

[11]  P. Helander,et al.  Collisional transport in magnetized plasmas , 2002 .

[12]  B. LaBombard,et al.  Universality of Intermittent Convective Transport in the Scrape‐off Layer of Magnetically Confined Devices , 2003 .

[13]  R. Motley Electrical characteristics of an ideal tokamak limiter , 1981 .

[14]  D. Coster,et al.  EDGE2D code simulations of SOL flows and in-out divertor asymmetries in JET , 2005 .

[15]  R. Hazeltine,et al.  The Framework Of Plasma Physics , 1998 .

[16]  S. Ichimaru,et al.  Statistical Plasma Physics , 1992 .

[17]  小野 周,et al.  L. Spitzer: Physics of Fully Ionized Gases, Interscience Tracts on Physics and astronomy, New york, 1956, 105頁, 13×21cm. , 1956 .

[18]  P. Stangeby,et al.  Heat transport in the JET scrape-off layer , 1998 .

[19]  R. Pitts,et al.  Overview of edge electrostatic turbulence experiments on TCV , 2005 .

[20]  J. Contributors,et al.  Boundary plasma energy transport in JET ELMy H-modes , 2004 .

[21]  G. Matthews,et al.  Parallel correlation measurements in the scrape-off layer of the Joint European Torus , 2002 .

[22]  J. Contributors,et al.  Institute of Physics Publishing Plasma Physics and Controlled Fusion a Model of Elm Filament Energy Evolution Due to Parallel Losses , 2005 .

[23]  W. Fundamenski Parallel heat flux limits in the tokamak scrape-off layer , 2005 .

[24]  W. Fundamenski,et al.  Radial interchange motions of plasma filaments , 2006 .

[25]  B. Leblanc,et al.  High-speed imaging of edge turbulence in NSTX , 2004 .

[26]  C. Lashmore-Davies Collisional Transport in Magnetized Plasmas, by Per Helander and Dieter J. Sigmar, Cambridge Monograph on Plasma Physics, Cambridge University Press (2002) , 2004, Journal of Plasma Physics.

[27]  H. Takenaga,et al.  Driving mechanism of SOL plasma flow and effects on the divertor performance in JT-60U , 2004 .

[28]  D. G. Whyte,et al.  Comparison of particle transport in the scrape-off layer plasmas of Alcator C-Mod and DIII-D , 2005 .

[29]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[30]  Confinement and dynamical regulation in two-dimensional convective turbulence , 2003 .

[31]  O. E. Garcia,et al.  Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas , 2006 .

[32]  Bill Scott,et al.  Tokamak turbulence computations on closed and open magnetic flux surfaces , 2005 .

[33]  Philippe Ghendrih,et al.  The Plasma Boundary of Magnetic Fusion Devices , 2001 .

[34]  J. Juul Rasmussen,et al.  Turbulence and intermittent transport at the boundary of magnetized plasmas , 2005 .

[35]  S. Zweben,et al.  Structure of edge-plasma turbulence in the Caltech tokamak , 1985 .

[36]  X. Garbet,et al.  Theoretical analysis of the influence of external biasing on long range turbulent transport in the scrape-off layer , 2003 .

[37]  Robert L. Dewar,et al.  Plasma Physics for Nuclear Fusion , 1979 .

[38]  W. Fundamenski,et al.  Interchange turbulence in the TCV scrape-off layer , 2006 .

[39]  O. E. Garcia,et al.  Mechanism and scaling for convection of isolated structures in nonuniformly magnetized plasmas , 2005 .

[40]  D. G. Whyte,et al.  The magnitude of plasma flux to the main-wall in the DIII-D tokamak , 2005 .

[41]  K. Hopcraft,et al.  Self-similar density turbulence in the TCV tokamak scrape-off layer , 2005 .

[42]  S. Benkadda,et al.  Blobs and front propagation in the scrape-off layer of magnetic confinement devices , 2003 .

[43]  W. Fundamenski,et al.  ELM-averaged power exhaust on JET , 2005 .

[44]  G. Chiodini,et al.  Statistical characterization of fluctuation wave forms in the boundary region of fusion and nonfusion plasmas , 2000 .

[45]  W. Fundamenski,et al.  A comparison of experimental measurements and code results to determine flows in the JET SOL , 2004 .

[46]  Paul H Rutherford,et al.  Introduction to Plasma Physics , 1995 .

[47]  A. Loarte,et al.  Scaling laws for edge plasma parameters in ITER from two-dimensional edge modelling , 2003 .

[48]  O E Garcia,et al.  Computations of intermittent transport in scrape-off layer plasmas. , 2004, Physical review letters.

[49]  T. Evans,et al.  Transport by intermittent convection in the boundary of the DIII-D tokamak , 2001 .

[50]  Brian Labombard,et al.  Transport-driven Scrape-Off-Layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma , 2004 .

[51]  A. Wootton,et al.  Fluctuations and anomalous transport in tokamaks , 1990 .

[52]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[53]  P. Zhmurin,et al.  Study of erosion of TiN coating in a hydrogen discharge with oscillating electrons , 1990 .