Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution

[1]  G. Webb,et al.  Solid state NMR , 1997 .

[2]  L. Gierasch,et al.  Orientations of helical peptides in membrane bilayers by solid state NMR spectroscopy. , 1996, Solid state nuclear magnetic resonance.

[3]  S J Ludtke,et al.  Membrane pores induced by magainin. , 1996, Biochemistry.

[4]  W. Maloy,et al.  Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. , 1996, Biochemistry.

[5]  N. Fujii,et al.  An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. , 1996, Biochemistry.

[6]  I. Campbell,et al.  Structural studies of synthetic peptides dissected from the voltage-gated sodium channel. , 1996, Journal of molecular biology.

[7]  N. Fujii,et al.  Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. , 1995, Biochemistry.

[8]  M. Sansom,et al.  Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics. , 1994, Biophysical journal.

[9]  D. Craik,et al.  Conformation of a peptide corresponding to T4 lysozyme residues 59-81 by NMR and CD spectroscopy. , 1994, Biochemistry.

[10]  S. Jayasinghe,et al.  Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. , 1994, Biochemistry.

[11]  N. Fujii,et al.  Orientational and aggregational states of magainin 2 in phospholipid bilayers. , 1994, Biochemistry.

[12]  R. Epand The Amphipathic Helix , 1993 .

[13]  P E Wright,et al.  Peptide models of protein folding initiation sites. 1. Secondary structure formation by peptides corresponding to the G- and H-helices of myoglobin. , 1993, Biochemistry.

[14]  T. Iwamoto,et al.  Design, synthesis and functional characterization of a pentameric channel protein that mimics the presumed pore structure of the nicotinic cholinergic receptor , 1993, FEBS letters.

[15]  N. Unwin Nicotinic acetylcholine receptor at 9 A resolution. , 1993, Journal of molecular biology.

[16]  J. H. Spencer,et al.  Conformation of magainin-2 and related peptides in aqueous solution and membrane environments probed by Fourier transform infrared spectroscopy. , 1992, Biochemistry.

[17]  R. Hodges,et al.  Relationship between amide proton chemical shifts and hydrogen bonding in amphipathic .alpha.-helical peptides , 1992 .

[18]  A. Yee,et al.  Uniform 15N labeling of a fungal peptide: the structure and dynamics of an alamethicin by 15N and 1H NMR spectroscopy. , 1992, Biochemistry.

[19]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.

[20]  F. Richards,et al.  Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. , 1991, Journal of molecular biology.

[21]  D. Patel,et al.  Solution structure of pardaxin P-2. , 1991, Biochemistry.

[22]  G. Molle,et al.  Synthetic analogues of alamethicin: effect of C-terminal residue substitutions and chain length on the ion channel lifetimes. , 1991, Biochimica et Biophysica Acta.

[23]  Y. Shai,et al.  Channel formation properties of synthetic pardaxin and analogues. , 1990, The Journal of biological chemistry.

[24]  I. Shalit,et al.  All‐D‐magainin: chirality, antimicrobial activity and proteolytic resistance , 1990, FEBS letters.

[25]  J. Keeler,et al.  Measurement of homonuclear coupling constants from NMR correlation spectra , 1990 .

[26]  K. Gable,et al.  Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa. , 1990, Biochemistry.

[27]  R. Cooke,et al.  High resolution 1H NMR study of the solution structure of the S4 segment of the sodium channel protein , 1989, FEBS letters.

[28]  N. Go,et al.  Structure of melittin bound to perdeuterated dodecylphosphocholine micelles as studied by two-dimensional NMR and distance geometry calculations , 1989 .

[29]  N. Kallenbach,et al.  Persistence of the alpha-helix stop signal in the S-peptide in trifluoroethanol solutions. , 1989, Biochemistry.

[30]  P. Kraulis,et al.  The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. , 1988, Biochemistry.

[31]  Hao‐Chia Chen,et al.  Synthetic magainin analogues with improved antimicrobial activity , 1988, FEBS letters.

[32]  J. Thornton,et al.  Helix geometry in proteins. , 1988, Journal of molecular biology.

[33]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[34]  I. Campbell,et al.  High-resolution proton NMR study of the solution structure of .delta.-hemolysin , 1988 .

[35]  A. Bax,et al.  A two‐dimensional NMR study of the antimicrobial peptide magainin 2 , 1988, FEBS Letters.

[36]  H. Rüterjans,et al.  13C-NMR Investigation of the insertion of the bee venom melittin into lecithin vesicles , 1987, European Biophysics Journal.

[37]  K. Wüthrich,et al.  Nuclear magnetic resonance investigation of the conformation of delta-haemolysin bound to dodecylphosphocholine micelles. , 1987, Biochimica et biophysica acta.

[38]  Ad Bax,et al.  MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy , 1985 .

[39]  K. Wüthrich,et al.  Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. , 1983, Biochemical and biophysical research communications.

[40]  K Wüthrich,et al.  Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. , 1983, Journal of molecular biology.

[41]  D. Tosteson,et al.  The sting. Melittin forms channels in lipid bilayers. , 1981, Biophysical journal.

[42]  D. Eisenberg,et al.  The structure of melittin. I. Structure determination and partial refinement. , 1981, The Journal of biological chemistry.

[43]  Richard R. Ernst,et al.  Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy , 1980 .

[44]  K Wüthrich,et al.  A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. , 1980, Biochemical and biophysical research communications.

[45]  W. D. Phillips,et al.  Solution behavior, circular dichroism and 22 HMz PMR studies of the bovine myelin basic protein. , 1975, Biochimica et biophysica acta.

[46]  E. Patrone,et al.  The effect of aliphatic alcohols on the helix-coil transition of poly-L-ornithine and poly-L-glutamic acid. , 1970, The Journal of biological chemistry.

[47]  P. Doty,et al.  POLYPEPTIDES. II. THE CONFIGURATION OF POLYMERS OF γ-BENZYL-L-GLUTAMATE IN SOLUTION1 , 1954 .

[48]  S. Harvey,et al.  The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. , 1994, Advances in protein chemistry.

[49]  K. Wüthrich,et al.  High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. , 1982, Biophysical journal.