A mechanism for hunchback promoters to readout morphogenetic positional information in less than a minute

Cell fate decisions in the fly embryo are rapid: hunchback genes decide in minutes whether nuclei follow the anterior/posterior developmental blueprint by reading out positional information in the Bicoid morphogen. This developmental system is a prototype of regulatory decision processes that combine speed and accuracy. Traditional arguments based on fixed-time sampling of Bicoid concentration indicate that an accurate readout is impossible within the experimental times. This raises the general issue of how speed-accuracy tradeoffs are achieved. Here, we compare fixed-time to on-the-fly decisions, based on comparing the likelihoods of anterior/posterior locations. We found that these more efficient schemes complete reliable cell fate decisions within the short embryological timescales. We discuss the influence of promoter architectures on decision times and error rates, present concrete examples that rapidly readout the morphogen, and predictions for new experiments. Lastly, we suggest a simple mechanism for RNA production and degradation that approximates the log-likelihood function.

[1]  Won-Ki Cho,et al.  Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing , 2016, Scientific Reports.

[2]  T. Mora,et al.  Limits of sensing temporal concentration changes by single cells. , 2010, Physical review letters.

[3]  J. Grimm,et al.  RNA Polymerase II cluster dynamics predict mRNA output in living cells , 2016, eLife.

[4]  Nathalie Dostatni,et al.  High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. , 2010, Biophysical journal.

[5]  Lars Chittka,et al.  Speed-accuracy tradeoffs in animal decision making. , 2009, Trends in ecology & evolution.

[6]  Michael W. Perry,et al.  Precision of Hunchback Expression in the Drosophila Embryo , 2012, Current Biology.

[7]  Thierry Mora,et al.  Receptor crosstalk improves concentration sensing of multiple ligands , 2018, bioRxiv.

[8]  Stefan J. Kiebel,et al.  Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model , 2014, Front. Hum. Neurosci..

[9]  G. Jiménez,et al.  Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. , 2000, Genes & development.

[10]  A. Wald On Cumulative Sums of Random Variables , 1944 .

[11]  Melissa M. Harrison,et al.  Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos , 2018, eLife.

[12]  Eric F Wieschaus,et al.  Concentration dependent chromatin states induced by the bicoid morphogen gradient , 2017, bioRxiv.

[13]  Mariela D. Petkova,et al.  Optimal Decoding of Cellular Identities in a Genetic Network , 2016, Cell.

[14]  G. Chaconas,et al.  Live Imaging. , 2020, Current issues in molecular biology.

[15]  Maya Mincheva,et al.  Network representations and methods for the analysis of chemical and biochemical pathways. , 2013, Molecular bioSystems.

[16]  Aleksandra M. Walczak,et al.  Live Imaging of Bicoid-Dependent Transcription in Drosophila Embryos , 2013, Current Biology.

[17]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[18]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[19]  Gautam Reddy,et al.  Infomax Strategies for an Optimal Balance Between Exploration and Exploitation , 2016, Journal of Statistical Physics.

[20]  Zhiyue Lu,et al.  Biophysical clocks face a trade-off between internal and external noise resistance , 2018, eLife.

[21]  P. O’Farrell,et al.  Embryonic Cleavage Cycles: How Is a Mouse Like a Fly? , 2004, Current Biology.

[22]  A. Tsirigos,et al.  Anterior-posterior positional information in the absence of a strong Bicoid gradient , 2009, Proceedings of the National Academy of Sciences.

[23]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[24]  N. Wingreen,et al.  Accuracy of direct gradient sensing by single cells , 2008, Proceedings of the National Academy of Sciences.

[25]  Arvind Murugan,et al.  Temporal Pattern Recognition through Analog Molecular Computation. , 2018, ACS synthetic biology.

[26]  Tim Kovacs,et al.  On optimal decision-making in brains and social insect colonies , 2009, Journal of The Royal Society Interface.

[27]  Wolfgang Driever,et al.  Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen , 1989, Nature.

[28]  Antti Häkkinen,et al.  Effects of the promoter open complex formation on gene expression dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Peter A. Lawrence,et al.  Control of Drosophila body pattern by the hunchback morphogen gradient , 1992, Cell.

[30]  B. Alberts,et al.  Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. , 1983, Journal of cell science.

[31]  N. Dostatni,et al.  Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo , 2005, Current Biology.

[32]  P. O’Farrell Growing an Embryo from a Single Cell: A Hurdle in Animal Life. , 2015, Cold Spring Harbor perspectives in biology.

[33]  A. Gelperin,et al.  Speed-Accuracy Tradeoff in Olfaction , 2006, Neuron.

[34]  Dmitri Papatsenko,et al.  The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Heinrich Meyr,et al.  Decision Making in the Arrow of Time. , 2015, Physical review letters.

[36]  Ned S. Wingreen,et al.  Know the Single-Receptor Sensing Limit? Think Again , 2015, Journal of statistical physics.

[37]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[38]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[39]  Pieter Rein ten Wolde,et al.  Mutual Repression Enhances the Steepness and Precision of Gene Expression Boundaries , 2012, PLoS Comput. Biol..

[40]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[41]  Mikhail Tikhonov,et al.  Only accessible information is useful: insights from gradient-mediated patterning , 2015, Royal Society Open Science.

[42]  Abraham Wald,et al.  Some Generalizations of the Theory of Cumulative Sums of Random Variables , 1945 .

[43]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[44]  P. R. ten Wolde,et al.  Role of spatial averaging in the precision of gene expression patterns. , 2009, Physical review letters.

[45]  N. Wingreen,et al.  Maximum likelihood and the single receptor. , 2009, Physical review letters.

[46]  Eric D. Siggia,et al.  Decisions on the fly in cellular sensory systems , 2013, Proceedings of the National Academy of Sciences.

[47]  Johannes Jaeger,et al.  Cellular and Molecular Life Sciences REVIEW The gap gene network , 2022 .

[48]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.

[49]  Michael Levine,et al.  Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo , 2011, Proceedings of the National Academy of Sciences.

[50]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[51]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[52]  Aleksandra M. Walczak,et al.  Precision in a rush: Trade-offs between reproducibility and steepness of the hunchback expression pattern , 2018, bioRxiv.

[53]  Jeremy Gunawardena,et al.  Information Integration and Energy Expenditure in Gene Regulation , 2016, Cell.

[54]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[55]  Alex Groisman,et al.  Incoherent Feedforward Control Governs Adaptation of Activated Ras in a Eukaryotic Chemotaxis Pathway , 2012, Science Signaling.

[56]  C. Fradin,et al.  The time to measure positional information: maternal Hunchback is required for the synchrony of the Bicoid transcriptional response at the onset of zygotic transcription , 2010, Development.

[57]  Richard P. Heitz,et al.  Neural Mechanisms of Speed-Accuracy Tradeoff , 2012, Neuron.

[58]  E. Siggia,et al.  Analysis of Combinatorial cis-Regulation in Synthetic and Genomic Promoters , 2008, Nature.

[59]  E Seifert,et al.  Differential regulation of the two transcripts from the Drosophila gap segmentation gene hunchback. , 1988, The EMBO journal.

[60]  Aleksandra M. Walczak,et al.  Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos , 2016, PLoS Comput. Biol..

[61]  F. Tostevin,et al.  The Berg-Purcell limit revisited. , 2014, Biophysical journal.

[62]  D. Katz,et al.  Antigen concentration determines helper T cell subset participation in IgE antibody responses. , 1992, Cellular immunology.

[63]  C. Nüsslein-Volhard,et al.  Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster , 1984, Wilhelm Roux's archives of developmental biology.

[64]  Aleksandra M Walczak,et al.  3 minutes to precisely measure morphogen concentration , 2018, bioRxiv.

[65]  W. Bialek,et al.  Physical limits to biochemical signaling. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Hernan G. Garcia,et al.  Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning , 2013, Current Biology.

[67]  Ann Dean,et al.  Enhancer and promoter interactions-long distance calls. , 2012, Current opinion in genetics & development.

[68]  D. Koshland,et al.  An amplified sensitivity arising from covalent modification in biological systems. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[69]  G. Chanfreau Impact of RNA Modifications and RNA-Modifying Enzymes on Eukaryotic Ribonucleases. , 2017, The Enzymes.

[70]  Clive G. Bowsher,et al.  Environmental sensing, information transfer, and cellular decision-making. , 2014, Current opinion in biotechnology.

[71]  Shawn C. Little,et al.  Precise Developmental Gene Expression Arises from Globally Stochastic Transcriptional Activity , 2013, Cell.

[72]  Diethard Tautz,et al.  Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres , 1988, Nature.

[73]  Michael Levine,et al.  Enhancer Control of Transcriptional Bursting , 2016, Cell.

[74]  R. Durrett Probability: Theory and Examples , 1993 .

[75]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[76]  Mustafa Mir,et al.  Dense Bicoid hubs accentuate binding along the morphogen gradient , 2017, bioRxiv.

[77]  J. Gunawardena,et al.  Dissecting the sharp response of a canonical developmental enhancer reveals multiple sources of cooperativity , 2018, bioRxiv.

[78]  K. Struhl,et al.  The gradient morphogen bicoid is a concentration-dependent transcriptional activator , 1989, Cell.