Watershed Modeling and its Applications: A State-of-the-Art Review

Advances in the understanding of physical, chemical, and biological processes influencing water quality, cou- pled with improvements in the collection and analysis of hydrologic data, provide opportunities for significant innovations in the manner and level with which watershed-scale processes may be explored and modeled. This paper provides a re- view of current trends in watershed modeling, including use of stochastic-based methods, distributed versus lumped pa- rameter techniques, influence of data resolution and scalar issues, and the utilization of artificial intelligence (AI) as part of a data-driven approach to assist in watershed modeling efforts. Important findings and observed trends from this work include (i) use of AI techniques artificial neural networks (ANN), fuzzy logic (FL), and genetic algorithms (GA) to im- prove upon or replace traditional physically-based techniques which tend to be computationally expensive; (ii) limitations in scale-up of hydrological processes for watershed modeling; and (iii) the impacts of data resolution on watershed model- ing capabilities. In addition, detailed discussions of individual watershed models and modeling systems with their fea- tures, limitations, and example applications are presented to demonstrate the wide variety of systems currently available for watershed management at multiple scales. A summary of these discussions is presented in tabular format for use by water resource managers and decision makers as a screening tool for selecting a watershed model for a specific purpose.

[1]  Soroosh Sorooshian,et al.  Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .

[2]  Zhi-feng Yang,et al.  A distributed non-point source pollution model: calibration and validation in the Yellow River Basin. , 2004, Journal of environmental sciences.

[3]  Yih-Chi Tan,et al.  Stochastic series lumped rainfall-runoff model for a watershed in Taiwan , 2001 .

[4]  Yongping Yuan,et al.  EVALUATION OF ANNAGNPS ON MISSISSIPPI DELTA MSEA WATERSHEDS , 2000 .

[5]  M. Santini,et al.  Pre-processing algorithms and landslide modelling on remotely sensed DEMs , 2009 .

[6]  Jean François Santucci,et al.  Prediction of the hydrologic behavior of a watershed using artificial neural networks and geographic information systems , 2000, Smc 2000 conference proceedings. 2000 ieee international conference on systems, man and cybernetics. 'cybernetics evolving to systems, humans, organizations, and their complex interactions' (cat. no.0.

[7]  Chuntian Cheng,et al.  Multiple criteria rainfall–runoff model calibration using a parallel genetic algorithm in a cluster of computers / Calage multi-critères en modélisation pluie–débit par un algorithme génétique parallèle mis en œuvre par une grappe d'ordinateurs , 2005 .

[8]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[9]  Katumi Musiake,et al.  Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation , 2001 .

[10]  G. R. Foster,et al.  Transport of Soil Particles by Shallow Flow , 1972 .

[11]  K. P. Sudheer,et al.  Estimating Actual Evapotranspiration from Limited Climatic Data Using Neural Computing Technique , 2003 .

[12]  C. L. Changa,et al.  Applying fuzzy theory and genetic algorithm to interpolate precipitation , 2005 .

[13]  P. Reed,et al.  Characterization of watershed model behavior across a hydroclimatic gradient , 2008 .

[14]  Richard P. Hooper,et al.  Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology , 2007 .

[15]  K. Eckhardt,et al.  Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range , 2003 .

[16]  Luis A. Bastidas,et al.  Multiobjective particle swarm optimization for parameter estimation in hydrology , 2006 .

[17]  Adil N. Godrej,et al.  The hydrological calibration and validation of a complexly-linked watershed-reservoir model for the Occoquan watershed, Virginia , 2007 .

[18]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[19]  Cândida Ferreira,et al.  Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence , 2014, Studies in Computational Intelligence.

[20]  Dawei Han,et al.  Evaporation Estimation Using Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System Techniques , 2009 .

[21]  Gilbert T. Bernhardt,et al.  A comprehensive surface-groundwater flow model , 1993 .

[22]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[23]  Thomas A. McMahon,et al.  Physically based hydrologic modeling: 2. Is the concept realistic? , 1992 .

[24]  Chittaranjan Ray,et al.  Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream , 2006 .

[25]  Aytac Guven,et al.  Linear genetic programming for time-series modelling of daily flow rate , 2009 .

[26]  Robert Callan,et al.  The essence of neural networks , 1998 .

[27]  Chansheng He,et al.  Distributed-Parameter Large Basin Runoff Model. I: Model Development , 2005 .

[28]  John Doherty,et al.  An advanced regularization methodology for use in watershed model calibration , 2006 .

[29]  Søren Hansen,et al.  Daisy: an open soil-crop-atmosphere system model , 2000, Environ. Model. Softw..

[30]  M. Sivapalan Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? , 2003 .

[31]  Pao-Shan Yu,et al.  Fuzzy multi-objective function for rainfall-runoff model calibration , 2000 .

[32]  D. Lettenmaier,et al.  Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs , 2004 .

[33]  Ashok Mishra,et al.  Evaluation of the SWAT Model for Assessing Sediment Control Structures in a Small Watershed in India , 2007 .

[34]  S Lindberg,et al.  An Integrated PC-modelling System for Hydraulic Analysis of Drainage Systems , 1989 .

[35]  P. E. O'connell,et al.  An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system , 1986 .

[36]  C. Jackson,et al.  A southeastern piedmont watershed sediment budget: Evidence for a multi-millennial agricultural legacy , 2005 .

[37]  Sovan Lek,et al.  Applications of artificial neural networks predicting macroinvertebrates in freshwaters , 2007, Aquatic Ecology.

[38]  P. E. O'connell,et al.  An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system , 1986 .

[39]  Mazdak Arabi,et al.  ROLE OF WATERSHED SUBDIVISION ON MODELING THE EFFECTIVENESS OF BEST MANAGEMENT PRACTICES WITH SWAT 1 , 2006 .

[40]  Raghavan Srinivasan,et al.  A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas , 2006, Environ. Model. Softw..

[41]  Santanu Kumar Behera,et al.  Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process based model , 2006 .

[42]  Tommy S. W. Wong Physically Based Approach in Hydrology-What Is the Benefit? , 2006 .

[43]  Kuolin Hsu,et al.  Artificial Neural Network Modeling of the Rainfall‐Runoff Process , 1995 .

[44]  L. Phil Graham,et al.  On the scale problem in hydrological modelling , 1998 .

[45]  Richard H. White,et al.  Simulating water quality improvements in the Upper North Bosque River watershed due to phosphorus export through turfgrass sod , 2006 .

[46]  David C. Garen,et al.  CURVE NUMBER HYDROLOGY IN WATER QUALITY MODELING: USES, ABUSES, AND FUTURE DIRECTIONS 1 , 2005 .

[47]  Linda See,et al.  Applying soft computing approaches to river level forecasting , 1999 .

[48]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[49]  S. Sorooshian,et al.  The Automatic Calibration of Conceptual Catchment Models Using Derivative‐Based Optimization Algorithms , 1985 .

[50]  E. Todini The ARNO rainfall-runoff model , 1996 .

[51]  Michael D. Dettinger,et al.  Simulated Hydrologic Responses to Climate Variations and Change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099 , 2001 .

[52]  S. Sorooshian,et al.  Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed , 1994 .

[53]  Caterina Valeo,et al.  Climate Change Impacts in the Elbow River Watershed , 2007 .

[54]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[55]  Allen T. Hjelmfelt,et al.  Artificial Neural Networks as Unit Hydrograph Applications , 1993 .

[56]  A. Thomson,et al.  SIMULATED IMPACTS OF EL NINO/SOUTHERN OSCILLATION ON UNITED STATES WATER RESOURCES 1 , 2003 .

[57]  S. Kraft,et al.  An Agent-Based Model of Multifunctional Agricultural Landscape Using Genetic Algorithms , 2008 .

[58]  Flemming Damgaard Christensen COUPLING BETWEEN THE RIVER BASIN MANAGEMENT MODEL (MIKE BASIN) AND THE 3D HYDROLOGICAL MODEL (MIKE SHE) WITH USE OF THE OPENMI SYSTEM , 2004 .

[59]  R. Maguire,et al.  Occurrence of alkylphenols and alkylphenol mono- and diethoxylates in natural waters of the Laurentian Great Lakes basin and the upper St. Lawrence River , 1997 .

[60]  Zhifeng Yang,et al.  Parameters optimization on DHSVM model based on a genetic algorithm , 2009 .

[61]  J. Thompson,et al.  Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England , 2004 .

[62]  Emmanuel Ledoux,et al.  Assessment of nitrate pollution in the Grand Morin aquifers (France): combined use of geostatistics and physically based modeling. , 2007, Environmental pollution.

[63]  M. Scheidhauer,et al.  Development of a System for 3D High-resolution Seismic Reflection Profiling on Lakes , 2005 .

[64]  Hydrologic Modeling Inventory: Cooperative Research Effort , 2006 .

[65]  Tom Addiscott,et al.  Modelling contaminant transport at catchment or regional scale , 1998 .

[66]  Arun Kumar,et al.  Long‐range experimental hydrologic forecasting for the eastern United States , 2002 .

[67]  J. Privette,et al.  Inversion methods for physically‐based models , 2000 .

[68]  C. Demetriou,et al.  Evaluating sustainable groundwater management options using the MIKE SHE integrated hydrogeological modelling package , 1998, Environ. Model. Softw..

[69]  D. Goodrich,et al.  Scenario Analysis for the San Pedro River, Analyzing Hydrological Consequences of a Future Environment , 2004, Environmental monitoring and assessment.

[70]  柯亭帆,et al.  Neural Network Approach for Estimating Reference Evapotranspiration from Limited Climatic Data in Burkina Faso , 2007 .

[71]  Soroosh Sorooshian,et al.  Response surface parameter sensitivity analysis methods for postcalibration studies , 1982 .

[72]  J. D. Norgard,et al.  A Hybrid Genetic Algorithm with Boltzmann Convergence Properties , 2008 .

[73]  Alex J. Cannon,et al.  Coupled modelling of glacier and streamflow response to future climate scenarios , 2008 .

[74]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[75]  Geza Pesti,et al.  A fuzzy rule-based approach to drought assessment , 1996 .

[76]  D. Wolock,et al.  Effects of digital elevation model map scale and data resolution on a topography‐based watershed model , 1994 .

[77]  A. Hobson USE OF A STOCHASTIC WEATHER GENERATOR IN A WATERSHED MODEL FOR STREAMFLOW SIMULATION , 2005 .

[78]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[79]  Narendra Singh Raghuwanshi,et al.  Development and Application of an Integrated Optimization-Simulation Model for Major Irrigation Projects , 2005 .

[80]  George Kuczera,et al.  Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis , 2009 .

[81]  A. Robinson Fayek,et al.  Application of fuzzy logic to forecast seasonal runoff , 2003 .

[82]  A. Hjelmfelt,et al.  Investigating prediction capability of HEG-1 and KINEROS kinematic wave runoff models — Reply , 1996 .

[83]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[84]  Henrik Madsen,et al.  Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .

[85]  Darius J. Semmens,et al.  Automated Geospatial Watershed Assessment (AGWA): A GIS-Based Tool for Watershed Assessment and Planning , 2008 .

[86]  Angela Lee,et al.  Perspectives on … Environmental Systems Research Institute, Inc , 1997 .

[87]  D. Goodrich,et al.  Integrating a Landscape/Hydrologic Analysis for Watershed Assessment , 2003 .

[88]  Søren Hansen,et al.  NPo-research, A10: DAISY: Soil Plant Atmosphere System Model , 1990 .

[89]  David D. Bosch,et al.  Watershed-Scale Simulation of Sediment and Nutrient Loads in Georgia Coastal Plain Streams using the Annualized AGNPS Model , 2002 .

[90]  J. Garbrecht Comparison of Three Alternative ANN Designs for Monthly Rainfall-Runoff Simulation , 2006 .

[91]  J. Parlange,et al.  A combined microscopic and macroscopic approach to modeling the transport of pathogenic microorganisms from nonpoint sources of pollution , 2006 .

[92]  A-Xing Zhu,et al.  Effects of spatial detail of soil information on watershed modeling , 2001 .

[93]  V. Singh,et al.  Computer Models of Watershed Hydrology , 1995 .

[94]  Markus Disse,et al.  Fuzzy rule-based models for infiltration , 1993 .

[95]  D. Goodrich,et al.  Investigating prediction capability of HEC-1 and KINEROS kinematic wave runoff models — Comment , 1996 .

[96]  D. Spittlehouse,et al.  Development of scale‐free climate data for Western Canada for use in resource management , 2006 .

[97]  S. Oogathoo RUNOFF SIMULATION IN THE CANAGAGIGUE CREEK WATERSHED USING THE MIKE SHE MODEL , 2006 .

[98]  M. Chalfen,et al.  Analytical and numerical solution of Saint-Venant equations , 1986 .

[99]  Narendra Singh Raghuwanshi,et al.  Estimating Evapotranspiration using Artificial Neural Network , 2002 .

[100]  David K. Stevens,et al.  EPRI’S WATERSHED ANALYSIS RISK MANAGEMENT FRAMEWORK (WARMF) VS. USEPA’S BETTER ASSESSMENT SCIENCE INTEGRATING POINT AND NONPOINT SOURCES (BASINS) , 2003 .

[101]  M. Butts,et al.  Flexible Integrated Watershed Modeling with MIKE SHE , 2005 .

[102]  C. T. Haan Parametric Uncertainty in Hydrologic Modeling , 1989 .

[103]  Vassilios A. Tsihrintzis,et al.  Modeling of non-point source pollution in a Mediterranean drainage basin , 2006 .

[104]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[105]  Barry J. Adams,et al.  Semidistributed Form of the Tank Model Coupled with Artificial Neural Networks , 2006 .

[106]  P. Braun,et al.  The problem of scaling in grid-related hydrological process modelling. , 1997 .

[107]  A. K. Gosain,et al.  Climate change impact assessment on hydrology of Indian river basins , 2006 .

[108]  Deva K. Borah,et al.  Calibrating a watershed simulation model involving human interference: an application of multi-objective genetic algorithms , 2008 .

[109]  Dimitri P. Solomatine,et al.  Application of adaptive fuzzy rule-based models for reconstruction of missing precipitation events , 2000 .

[110]  John Doherty,et al.  Parameter estimation and uncertainty analysis for a watershed model , 2007, Environ. Model. Softw..

[111]  N. Null Artificial Neural Networks in Hydrology. I: Preliminary Concepts , 2000 .

[112]  C. Jayatilaka,et al.  Simulation of water flow on irrigation bay scale with MIKE-SHE , 1998 .

[113]  Thomas E. McKone,et al.  Can fuzzy logic bring complex problems into focus? Modeling imprecise factors in environmental policy , 2004 .

[114]  R. Hunt,et al.  Use of a watershed-modeling approach to assess hydrologic effects of urbanization, North Fork Pheasant Branch basin near Middleton, Wisconsin , 2001 .

[115]  Fi-John Chang,et al.  Adaptive neuro-fuzzy inference system for prediction of water level in reservoir , 2006 .

[116]  M. Sivakumar,et al.  Techniques for predicting total phosphorus in urban stormwater runoff at unmonitored catchments , 2004 .

[117]  Jason Smith,et al.  Neural-Network Models of Rainfall-Runoff Process , 1995 .

[118]  Bill Taylor,et al.  Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia , 2006 .

[119]  M. Arsi,et al.  DEM-Based GIS Algorithms for Automatic Creation of Hydrological Models Data , 2009 .

[120]  Thomas J. Jackson,et al.  Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04 , 2008 .

[121]  R. Hawkins Runoff Curve Numbers with Varying Site Moisture , 1978 .

[122]  Ilona Bärlund,et al.  Assessing SWAT model performance in the evaluation of management actions for the implementation of the Water Framework Directive in a Finnish catchment , 2007, Environ. Model. Softw..

[123]  Mahmud Güngör,et al.  River flow estimation using adaptive neuro fuzzy inference system , 2007, Math. Comput. Simul..

[124]  F. Gasse,et al.  Analysis of the hydrological response of a tropical terminal lake, Lake Abiyata (Main Ethiopian Rift Valley) to changes in climate and human activities , 2004 .

[125]  Souad Riad,et al.  Rainfall-runoff model usingan artificial neural network approach , 2004, Math. Comput. Model..

[126]  David M. Goldman,et al.  The New HEC-1 Flood Hydrograph Package. , 1981 .

[127]  A. Bárdossy,et al.  Development of a fuzzy logic-based rainfall-runoff model , 2001 .

[128]  Lakshman Nandagiri,et al.  Performance Evaluation of Reference Evapotranspiration Equations across a Range of Indian Climates , 2006 .

[129]  Narendra Singh Raghuwanshi,et al.  Runoff and Sediment Yield Modeling using Artificial Neural Networks: Upper Siwane River, India , 2006 .

[130]  Jianfeng Wu,et al.  Using genetic algorithm based simulated annealing penalty function to solve groundwater management model , 1999 .

[131]  Shie-Yui Liong,et al.  PHYSICALLY INTERPRET ABLE RAINFALL-RUNOFF MODELS USING GENETIC PROGRAMMING , 2004 .

[132]  Ewald Schnug,et al.  Runoff mapping using WEPP erosion model and GIS tools , 2005, Comput. Geosci..

[133]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .

[134]  K. Yürekli,et al.  Testing the Residuals of an ARIMA Model on the Çekerek Stream Watershed in Turkey , 2005 .

[135]  Praveen Kumar,et al.  On the use of digital elevation model data for Hortonian and fractal analyses of channel networks , 1993 .

[136]  Hafzullah Aksoy,et al.  Genetic Programming‐Based Empirical Model for Daily Reference Evapotranspiration Estimation , 2008 .

[137]  R. Govindaraju,et al.  Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds , 2003 .

[138]  B. Adams,et al.  Integration of artificial neural networks with conceptual models in rainfall-runoff modeling , 2006 .

[139]  Adel Shirmohammadi,et al.  EVALUATION OF THE SWAT MODEL'S SEDIMENT AND NUTRIENT COMPONENTS IN THE PIEDMONT PHYSIOGRAPHIC REGION OF MARYLAND , 2004 .

[140]  Michael Rode,et al.  Multi-objective calibration and fuzzy preference selection of a distributed hydrological model , 2008, Environ. Model. Softw..

[141]  C. Bretherton,et al.  Statistical Precipitation Downscaling over the Northwestern United States Using Numerically Simulated Precipitation as a Predictor , 2003 .

[142]  J. Refsgaard,et al.  Hydrological modelling of a small watershed using MIKE SHE for irrigation planning , 1999 .

[143]  John C. Rodda,et al.  Guide to Hydrological Practices , 2011 .

[144]  Avi Ostfeld,et al.  A coupled model tree-genetic algorithm scheme for flow and water quality predictions in watersheds , 2008 .

[145]  Jens Christian Refsgaard,et al.  Terminology, Modelling Protocol And Classification of Hydrological Model Codes , 1990 .

[146]  Darius J. Semmens,et al.  The Automated Geospatial Watershed Assessment tool , 2007, Environ. Model. Softw..

[147]  P. Burlando,et al.  Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability in the Arno River, central Italy , 2002 .

[148]  Indrajeet Chaubey,et al.  Evaluation of landscape and instream modeling to predict watershed nutrient yields , 2007, Environ. Model. Softw..

[149]  Moon Seong Kang,et al.  Applying SWAT for TMDL programs to a small watershed containing rice paddy fields , 2006 .

[150]  Peter A. Whigham,et al.  Modelling rainfall-runoff using genetic programming , 2001 .

[151]  R. Hunt,et al.  Simulation of the recharge area for Frederick Springs, Dane County, Wisconsin , 2000 .

[152]  Sihem Benabdallah,et al.  Application of the SWAT model on the Medjerda river basin (Tunisia) , 2005 .

[153]  Guo H. Huang,et al.  Modeling the effects of elevation data resolution on the performance of topography-based watershed runoff simulation , 2007, Environ. Model. Softw..

[154]  Reed M. Maxwell,et al.  Patterns and dynamics of river–aquifer exchange with variably-saturated flow using a fully-coupled model , 2009 .

[155]  Carlos Roberto de Souza Filho,et al.  Application of fuzzy logic to the evaluation of runoff in a tropical watershed , 2008, Environ. Model. Softw..

[156]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[157]  Yakov A. Pachepsky,et al.  Modeling bacteria fate and transport in watersheds to support TMDLs , 2006 .

[158]  Rollin H. Hotchkiss,et al.  IMPACTS OF CLIMATE CHANGE ON MISSOURI RWER BASIN WATER YIELD 1 , 2001 .

[159]  Alan K. Zundel,et al.  IMPACT OF VARIED DATA RESOLUTION ON HYDRAULIC MODELING AND FLOODPLAIN DELINEATION 1 , 2003 .

[160]  J. Arnold,et al.  Predicting Water, Sediment and NO3-N Loads under Scenarios of Land-use and Management Practices in a Flat Watershed , 2004 .

[161]  Manfred Stüber,et al.  Fuzzy logic-based rainfall—runoff modelling using soil moisture measurements to represent system state , 2007 .

[162]  C. Tague,et al.  The Potential Utility of Physically Based Hydrologic Modeling in Ungauged Urban Streams , 2008 .

[163]  Yakov A. Pachepsky,et al.  Transport and fate of manure-borne pathogens: Modeling perspective , 2006 .

[164]  Rob Jamieson,et al.  Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches , 2004 .

[165]  Soroosh Sorooshian,et al.  Toward improved identifiability of hydrologic model parameters: The information content of experimental data , 2002 .

[166]  Muttucumaru Sivakumar,et al.  Prediction of urban stormwater quality using artificial neural networks , 2009, Environ. Model. Softw..

[167]  Jeffrey G. Arnold,et al.  The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions , 2007 .

[168]  Barbara Baginska,et al.  Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST , 2003, Environ. Model. Softw..

[169]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: The question of parameter observability and uniqueness , 1983 .

[170]  Murugesu Sivapalan,et al.  Scale issues in hydrological modelling: A review , 1995 .

[171]  Hitoshi Tanaka,et al.  Developing a hybrid multi‐model for peak flood forecasting , 2009 .

[172]  R. Govindaraju,et al.  Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds , 2003 .

[173]  D. Maidment Arc hydro : GIS for water resources , 2002 .

[174]  Narendra Singh Raghuwanshi,et al.  Development and Validation of GANN Model for Evapotranspiration Estimation , 2009 .

[175]  George Kuczera,et al.  On the relationship between the reliability of parameter estimates and hydrologic time series data used in calibration , 1982 .

[176]  K. Beven Rainfall-Runoff Modelling: The Primer , 2012 .

[177]  Indrajeet Chaubey,et al.  SENSITIVITY ANALYSIS, CALIBRATION, AND VALIDATIONS FOR A MULTISITE AND MULTIVARIABLE SWAT MODEL 1 , 2005 .

[178]  V. Singh,et al.  Mathematical models of small watershed hydrology and applications. , 2002 .

[179]  Raghavan Srinivasan,et al.  Comparison of a Subjective and a Physical Approach for Identification of Priority Areas for Soil and Water Management in a Watershed – A Case Study of Nagwan Watershed in Hazaribagh District of Jharkhand, India , 2004 .

[180]  Ezio Todini,et al.  Role and treatment of uncertainty in real‐time flood forecasting , 2004 .

[181]  Zhi-Jun Liu,et al.  A Stream Network Model for Integrated Watershed Modeling , 2008 .

[182]  Deva K. Borah,et al.  AGNPS-based Assessment of the Impact of BMPs on Nitrate-Nitrogen Discharging into an Illinois Water Supply Lake , 2002 .

[183]  Arturo A. Keller,et al.  Stochastic Watershed Water Quality Simulation for TMDL Development – A Case Study in the Newport Bay Watershed 1 , 2008 .

[184]  George Kuczera,et al.  Probabilistic optimization for conceptual rainfall-runoff models: A comparison of the shuffled complex evolution and simulated annealing algorithms , 1999 .

[185]  Vijay P. Singh,et al.  The Precipitation-Runoff Modeling System - PRMS. , 1995 .

[186]  Brian D. Smerdon,et al.  Review of hydrologic models for forest management and climate change applications in British Columbia and Alberta. , 2009 .

[187]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[188]  D. K. Borah,et al.  WATERSHED-SCALE HYDROLOGIC AND NONPOINT-SOURCE POLLUTION MODELS: REVIEW OF MATHEMATICAL BASES , 2003 .

[189]  David C. Goodrich,et al.  Fuzzy logic for watershed assessment , 2001 .

[190]  S. Sorooshian,et al.  Evaluation of Maximum Likelihood Parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility , 1983 .

[191]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[192]  Brian E Skahill,et al.  Potential Improvements for HEC-HMS Automated Parameter Estimation , 2006 .

[193]  Yong-Huang Lin,et al.  The strategy of building a flood forecast model by neuro‐fuzzy network , 2006 .

[194]  A. Saleh,et al.  EVALUATION OF SWAT AND HSPF WITHIN BASINS PROGRAM FOR THE UPPER NORTH BOSQUE RIVER WATERSHED IN CENTRAL TEXAS , 2004 .

[195]  George H. Leavesley,et al.  Prediction of a Flash Flood in Complex Terrain. Part II: A Comparison of Flood Discharge Simulations Using Rainfall Input from Radar, a Dynamic Model, and an Automated Algorithmic System , 2000 .

[196]  Jurgen D. Garbrecht,et al.  GIS and Distributed Watershed Models. II: Modules, Interfaces, and Models , 2001 .

[197]  Francisco J. Rueda,et al.  Implementing river water quality modelling issues in mesoscale watershed models for water policy demands??an overview on current concepts, deficits, and future tasks , 2004 .

[198]  R. D. Connolly,et al.  Distributed Parameter Hydrology Model (ANSWERS) Applied to Spatially Complex Catchments Using Rainfall Simulator Data , 1990 .

[199]  Dong Wang,et al.  A Stochastic Model for Mid-to-Long-Term Runoff Forecast , 2008, 2008 Fourth International Conference on Natural Computation.

[200]  A. Loukas,et al.  A physically based stochastic-deterministic procedure for the estimation of flood frequency , 1996 .

[201]  S. Djordjević,et al.  Potential and limitations of 1D modelling of urban flooding , 2004 .

[202]  Vijay P. Singh,et al.  Hydrological Simulation Program - Fortran (HSPF). , 1995 .

[203]  Vladan Babovic,et al.  GENETIC PROGRAMMING: A NEW PARADIGM IN RAINFALL RUNOFF MODELING 1 , 2002 .

[204]  E. Vivoni,et al.  Modeling Ungauged Tributaries using Geographical Information Systems ( GIS ) and System Dynamics , 2006 .

[205]  François Anctil,et al.  Evaluation of Neural Network Streamflow Forecasting on 47 Watersheds , 2005 .

[206]  K. Beven,et al.  Terrain analysis and distributed modelling in hydrology , 1993 .

[207]  A. Feldman,et al.  Hydrologic Modeling System , 1996 .

[208]  Mukand S. Babel,et al.  Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal , 2006, Environ. Model. Softw..

[209]  F. M. Conly,et al.  Modelling climate change impacts in the Peace and Athabasca catchment and delta: I—hydrological model application , 2006 .

[210]  Jeffrey G. Arnold,et al.  DEVELOPMENT AND APPLICATION OF SWAT TO LANDSCAPES WITH TILES AND POTHOLES , 2005 .

[211]  Vladan Babovic,et al.  GENETIC PROGRAMMING AND ITS APPLICATION IN REAL‐TIME RUNOFF FORECASTING 1 , 2001 .

[212]  Karsten H. Jensen,et al.  Future of distributed modelling , 1992 .

[213]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[214]  Joos Vandewalle,et al.  Artificial neural networks in hydrological watershed modeling: surface flow contribution from the ungaged parts of a catchment , 2001, Proceedings 13th IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001.

[215]  Vijay P. Singh,et al.  ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff , 2006 .

[216]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[217]  E. Salathe,et al.  Downscaling simulations of future global climate with application to hydrologic modelling , 2005 .

[218]  A. Jakeman,et al.  How much complexity is warranted in a rainfall‐runoff model? , 1993 .

[219]  Jy-Shing Wu,et al.  Artificial Neural Networks for Forecasting Watershed Runoff and Stream Flows , 2005 .

[221]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[222]  C. Zheng,et al.  GROUND WATER MANAGEMENT OPTIMIZATION USING GENETIC ALGORITHMS AND SIMULATED ANNEALING: FORMULATION AND COMPARISON 1 , 1998 .

[223]  Lucien Duckstein,et al.  Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems , 1995 .

[224]  L. Kalin Evaluation of Sediment Transport Models and Comparative Application of Two Watershed Models , 2003 .

[225]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[226]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[227]  Félix Francés,et al.  Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework , 2007 .

[228]  P. Burlando,et al.  Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy , 2002 .

[229]  Henrik Madsen,et al.  Parameter estimation in stochastic rainfall-runoff models , 2006 .

[230]  V. Singh,et al.  Mathematical Modeling of Watershed Hydrology , 2002 .

[231]  C. Neal,et al.  Modelling streamwater quality under varying hydrological conditions at different spatial scales , 1999 .

[232]  E. J. Monke,et al.  The Mathematical Simulation of the Hydrology of Small Watersheds , 1966 .

[233]  Lazaros S. Iliadis,et al.  An Artificial Neural Network model for mountainous water-resources management: The case of Cyprus mountainous watersheds , 2007, Environ. Model. Softw..

[234]  Lucien Duckstein,et al.  Fuzzy conceptual rainfall–runoff models , 2001 .

[235]  Stan Openshaw,et al.  A hybrid multi-model approach to river level forecasting , 2000 .

[236]  Chansheng He,et al.  Spatially Distributed Watershed Model Of Water And Materials Runoff , 2007 .

[237]  Jurgen D. Garbrecht,et al.  GIS and Distributed Watershed Models II , 2001 .

[238]  L. F. Huggins,et al.  ANSWERS: A Model for Watershed Planning , 1980 .

[239]  R. Jana,et al.  A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds , 2009 .

[240]  Soroosh Sorooshian,et al.  Toward improved streamflow forecasts: value of semidistributed modeling , 2001 .

[241]  Estimation of Design Flood Hydrograph for an Ungauged Watershed , 2005 .

[242]  G. H. Leavesley,et al.  Precipitation-runoff modeling system; user's manual , 1983 .

[243]  Vijay P. Singh,et al.  CASC2D: a two-dimensional, physically-based, Hortonian hydrologic model. , 2002 .