Assessment of the influence of adaptive components in trainable surface inspection systems

In this paper, we present a framework for the classification of images in surface inspection tasks and address several key aspects of the processing chain from the original image to the final classification result. A major contribution of this paper is a quantitative assessment of how incorporating adaptivity into the feature calculation, the feature pre-processing, and into the classifiers themselves, influences the final image classification performance. Hereby, results achieved on a range of artificial and real-world test data from applications in printing, die-casting, metal processing and food production are presented.

[1]  M.R. Azimi-Sadjadi,et al.  Adaptive feature mapping for underwater target classification , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[2]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[3]  Edwin Lughofer,et al.  FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models , 2008, IEEE Transactions on Fuzzy Systems.

[4]  Stefanie Peters,et al.  Optimized texture operators for the automated design of image analysis systems: Non-linear and oriented kernels vs. gray value co-occurrence matrices , 2007, Int. J. Hybrid Intell. Syst..

[5]  Praminda Caleb-Solly,et al.  A Novel Feature Selection Based Semi-supervised Method for Image Classification , 2008, ICVS.

[6]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[7]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[8]  Calyampudi R. Rao,et al.  Linear statistical inference and its applications , 1965 .

[9]  Nikolas P. Galatsanos,et al.  A support vector machine approach for detection of microcalcifications , 2002, IEEE Transactions on Medical Imaging.

[10]  Franz Pernkopf,et al.  Detection of surface defects on raw steel blocks using Bayesian network classifiers , 2004, Pattern Analysis and Applications.

[11]  Tyng-Luh Liu,et al.  Probabilistic tracking with adaptive feature selection , 2004, ICPR 2004.

[12]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..

[13]  Lei Wang,et al.  A framework for image classification , 2006, 2006 IEEE Southwest Symposium on Image Analysis and Interpretation.

[14]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[15]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[16]  Fionn Murtagh,et al.  Flaw Detection In Woven Textiles using Space-dependent Fourier Transform , 1997 .

[17]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[18]  Praminda Caleb-Solly,et al.  Adaptive surface inspection via interactive evolution , 2007, Image Vis. Comput..

[19]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[20]  C.-H. Grunditz,et al.  Constructing a neural system for surface inspection , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[21]  Ben J Hicks,et al.  SPIE - The International Society for Optical Engineering , 2001 .

[22]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[23]  Stefanos Kollias,et al.  Retrainable neural networks for image analysis and classification , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[24]  Robert P. W. Duin,et al.  Limits on the majority vote accuracy in classifier fusion , 2003, Pattern Analysis & Applications.

[25]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[26]  Edwin Lughofer,et al.  Increasing Classification Robustness with Adaptive Features , 2008, ICVS.

[27]  R. Collins,et al.  On-line selection of discriminative tracking features , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[28]  Sung-Bae Cho,et al.  Combining multiple neural networks by fuzzy integral for robust classification , 1995, IEEE Trans. Syst. Man Cybern..

[29]  Mark S. Nixon,et al.  Feature Extraction and Image Processing , 2002 .

[30]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[31]  Lluís A. Belanche Muñoz,et al.  Feature selection algorithms: a survey and experimental evaluation , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[32]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[33]  Antti J. Koivo,et al.  Hierarchical classification of surface defects on dusty wood boards , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[34]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[35]  Hendrik Van Brussel,et al.  Classifier Fusion Using Discounted Dempster-Shafer Combination , 2007, MLDM Posters.

[36]  Hans Burkhardt,et al.  Feature Selection for Retrieval Purposes , 2006, ICIAR.

[37]  Claire Cardie,et al.  Using Decision Trees to Improve Case-Based Learning , 1993, ICML.

[38]  Shang-Hong Lai,et al.  Hausdorff distance based PCB inspection system with defect classification , 2005, SPIE Optics East.

[39]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[40]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[41]  Marc Schael Texture Defect Detection Using Invariant Textural Features , 2001, DAGM-Symposium.

[42]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[43]  Aysin Ertüzün,et al.  Comparative evaluation of texture analysis algorithms for defect inspection of textile products , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[44]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[45]  A. F. Limas Serafim Segmentation of natural images based on multiresolution pyramids linking of the parameters of an autoregressive rotation invariant model. Application to leather defects detection , 1992, ICPR.

[46]  Philip D. Wasserman,et al.  Advanced methods in neural computing , 1993, VNR computer library.

[47]  Muhammad Atif Tahir,et al.  Improving Nearest Neighbor Classifier Using Tabu Search and Ensemble Distance Metrics , 2006, Sixth International Conference on Data Mining (ICDM'06).

[48]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[49]  Edwin Lughofer,et al.  Extensions of vector quantization for incremental clustering , 2008, Pattern Recognit..

[50]  Galina L. Rogova,et al.  Combining the results of several neural network classifiers , 1994, Neural Networks.

[51]  Til Aach,et al.  A two-stage-classifier for defect classification in optical media inspection , 2002, Object recognition supported by user interaction for service robots.

[52]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[53]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[54]  Plamen P. Angelov,et al.  Evolving Single- And Multi-Model Fuzzy Classifiers with FLEXFIS-Class , 2007, 2007 IEEE International Fuzzy Systems Conference.

[55]  Elzbieta Pekalska,et al.  The Dissimilarity representations in pattern recognition. Concepts, theory and applications. , 2005 .

[56]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[57]  Nelson H. C. Yung,et al.  Robust fabric defect detection and classification using multiple adaptive wavelets , 2005 .

[58]  Zhigang Fan,et al.  Automated Inspection of Textile Fabrics Using Textural Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Eusebio de la Fuente López,et al.  On-line machine vision system for detect split defects in sheet-metal forming processes , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[60]  Ari Visa,et al.  An adaptive texture and shape based defect classification , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[61]  Abdelmonem A. Afifi,et al.  Comparison of Stopping Rules in Forward Stepwise Discriminant Analysis , 1979 .

[62]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[63]  Lawrence Carin,et al.  A Bayesian approach to joint feature selection and classifier design , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.