Objective Bayesian analysis for the multivariate skew-t model

We propose a novel Bayesian analysis of the p-variate skew-t model, providing a new parameterization, a set of non-informative priors and a sampler specifically designed to explore the posterior density of the model parameters. Extensions, such as the multivariate regression model with skewed errors and the stochastic frontiers model, are easily accommodated. A novelty introduced in the paper is given by the extension of the bivariate skew-normal model given in Liseo and Parisi (2013) to a more realistic p-variate skew-t model. We also introduce the R package mvst, which produces a posterior sample for the parameters of a multivariate skew-t model.

[1]  Adelchi Azzalini,et al.  The Skew-Normal and Related Families , 2018 .

[2]  N. Sartori Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions , 2006 .

[3]  P. Embrechts Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality , 2005 .

[4]  Gilberto A. Paula,et al.  On estimation and influence diagnostics for log-Birnbaum–Saunders Student-t regression models: Full Bayesian analysis , 2010 .

[5]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[6]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[7]  Sharon X. Lee,et al.  EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm , 2012, 1211.5290.

[8]  Brian Gough,et al.  GNU Scientific Library Reference Manual - Third Edition , 2003 .

[9]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[10]  Helio S. Migon,et al.  Objective Bayesian analysis for the Student-t regression model , 2008 .

[11]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[12]  V. H. Lachos,et al.  mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions , 2013 .

[13]  Andrew D. Martin,et al.  MCMCpack: Markov chain Monte Carlo in R , 2011 .

[14]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[15]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[16]  Tsung-I Lin,et al.  Robust linear mixed models using the skew t distribution with application to schizophrenia data , 2010, Biometrical journal. Biometrische Zeitschrift.

[17]  B. Liseo,et al.  Objective Bayesian Analysis of Skew‐t Distributions , 2013 .

[18]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[19]  Yong Li,et al.  A Bayesian chi-squared test for hypothesis testing , 2015 .

[20]  Fabrizio Leisen,et al.  Objective Bayesian modelling of insurance risks with the skewed Student-t distribution , 2016, 1607.04796.

[21]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[22]  Junni L. Zhang Comparative investigation of three Bayesian p values , 2014, Comput. Stat. Data Anal..

[23]  Svetlozar T. Rachev,et al.  Bayesian methods in finance , 2008 .

[24]  Yulia V. Marchenko,et al.  A Suite of Commands for Fitting the Skew-normal and Skew-t models , 2010 .

[25]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[26]  M. Steel,et al.  Multivariate Student -t Regression Models : Pitfalls and Inference , 1999 .

[27]  Cristina Rueda,et al.  isocir: An R Package for Constrained Inference using Isotonic Regression for Circular Data, with an Application to Cell Biology. , 2013, Journal of statistical software.

[28]  R. Arellano-Valle,et al.  LIKELIHOOD BASED INFERENCE FOR SKEW-NORMAL INDEPENDENT LINEAR MIXED MODELS , 2010 .

[29]  Cristiano Villa,et al.  Objective priors for the number of degrees of freedom of a multivariate t distribution and the t-copula , 2017, Comput. Stat. Data Anal..

[30]  Peter E. Jupp,et al.  Modifications of the Rayleigh and Bingham Tests for Uniformity of Directions , 2001 .

[31]  T. Hothorn,et al.  Multivariate Normal and t Distributions , 2016 .

[32]  M. Genton,et al.  Robust Likelihood Methods Based on the Skew‐t and Related Distributions , 2008 .

[33]  Adelchi Azzalini,et al.  Combining local and global smoothing in multivariate density estimation , 2016, 1610.02372.

[34]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[35]  M. Steel,et al.  Bayesian modelling of skewness and kurtosis with Two-Piece Scale and shape distributions , 2014, 1406.7674.

[36]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[37]  Brunero Liseo,et al.  Bayesian inference for the multivariate skew-normal model: A population Monte Carlo approach , 2012, Comput. Stat. Data Anal..

[38]  Victor H. Lachos,et al.  Multivariate mixture modeling using skew-normal independent distributions , 2012, Comput. Stat. Data Anal..

[39]  Arthur Pewsey,et al.  Skew t distributions via the sinh-arcsinh transformation , 2011 .