The Fontaine-Mazur conjecture for {GL}_2
暂无分享,去创建一个
[1] M. Kisin. Modularity of 2-adic Barsotti-Tate representations , 2009 .
[2] Fred Diamond,et al. The Taylor-Wiles construction and multiplicity one , 1997 .
[3] M. Kisin. Overconvergent modular forms and the Fontaine-Mazur conjecture , 2003 .
[4] Fred Diamond,et al. ON DEFORMATION RINGS AND HECKE RINGS , 1996 .
[5] Jean-Pierre Serre,et al. Fermat ’ s Last Theorem , 2017 .
[6] Richard Taylor. Galois representations associated to Siegel modular forms of low weight , 1991 .
[7] Kenneth A. Ribet,et al. Modular elliptic curves and fermat's last theorem , 1993 .
[8] Fred Diamond,et al. Modularity of Certain Potentially Barsotti-Tate Galois Representations , 1999 .
[9] Toby Gee. Automorphic lifts of prescribed types , 2008, 0810.1877.
[10] H. Carayol. Formes modulaires et repr'esentations galoisiennes `a valeurs dans un anneau local complet , 1991 .
[11] A. Atkin,et al. Modular Forms , 2017 .
[12] M. Kisin. Moduli of finite flat group schemes, and modularity , 2009 .
[13] C. Breuil. Sur quelques représentations modulaires et p-adiques de GL2(Qp): I , 2003, Compositio Mathematica.
[14] B. Mazur,et al. On the density of modular representations , 1997 .
[15] Fred Diamond,et al. THE TAMAGAWA NUMBER CONJECTURE OF ADJOINT MOTIVES OF MODULAR FORMS , 2004 .
[16] J. Fontaine,et al. Construction de représentations $p$-adiques , 1982 .
[17] Alexander Grothendieck,et al. Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie , 1966 .
[18] Barry Mazur,et al. An Introduction to the Deformation Theory of Galois Representations , 1997 .
[19] C. Breuil. SUR QUELQUES REPRÉSENTATIONS MODULAIRES ET $p$-ADIQUES DE $\mathrm{GL}_2(\bm{Q}_{p})$. II , 2003, Journal of the Institute of Mathematics of Jussieu.
[20] R. Livne,et al. Irreducible modular representations of $\mathrm{GL}_2$ of a local field , 1994 .
[21] M. Kisin. Deformations of GQp and GL2(Qp) Representations , 2010 .
[22] Richard Taylor. On the Meromorphic Continuation of Degree Two L-Functions , 2006 .
[23] A. Wiles,et al. Ring-Theoretic Properties of Certain Hecke Algebras , 1995 .
[24] M. Kisin. Geometric deformations of modular Galois representations , 2004 .
[25] C. Breuil,et al. Multiplicités modulaires et représentations de ${\rm GL}\sb 2(\mathbf {Z}\sb p)$ et de ${\rm Gal}(\overline {\mathbf {Q}}\sb p/\mathbf {Q}\sb p)$ en $\ell=p$. Appendice par Guy Henniart. Sur l'unicité des types pour ${\rm GL}\sb 2$ , 2002 .
[26] R. Taylor,et al. On the modularity of elliptic curves over 𝐐: Wild 3-adic exercises , 2001, Journal of the American Mathematical Society.
[27] C. Breuil. Invariant L et s'erie sp'eciale p-adique , 2004 .
[28] Hanfeng Li,et al. Construction of some families of 2-dimensional crystalline representations , 2003, math/0310275.
[29] Thomas de Quincey. [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.
[30] Gary Cornell,et al. Modular Forms and Fermat's Last Theorem , 1997 .
[31] G. Böckle. On the density of modular points in universal deformation spaces , 2001 .
[32] A. Wiles,et al. Residually reducible representations and modular forms , 1999 .
[33] M. Kisin. Potentially semi-stable deformation rings , 2007 .