Modulation-assisted unequal error protection over the fading channel

Unequal error protection (UEP) is essential when different portions of the source data do not contribute evenly to the overall duality of the decoded information. Conventional techniques achieve UEP by independent coding of the bit streams or by adopting conventional unequal error-protection codes. In this paper, we propose a practical alternative to the QPSK-based transmission systems with explicit UEP, such as GSM or IS-54 wireless transmission standards. In this scheme, the task of providing unequal protection is divided between the channel encoder and a nonuniform signal set, which discriminates in favor of the more important bits. The new approach allows for a simpler convolutional encoder and, hence, a less complex decoding procedure. Specifically, a reduction by more than half in the number of encoder states can easily be achieved using our scheme. Countering the degradation of the less important bits, we propose to adopt a high-rate punctured convolutional code to minimize the incurred transmission rate penalty. We also discuss a pilot sequence transmission scheme which realizes a coherent reception. Decentralizing the bit protection culminates in an extra degree of freedom which, in turn, introduces more flexibility into the system design.

[1]  J. W. Modestino,et al.  Combined Source-Channel Coding of Images , 1978, IEEE Trans. Commun..

[2]  D. Graupe,et al.  Punctured Convolutional Codes of Rate (n - 1)/n and Simplified Maximum Likelihood Decoding , 1979 .

[3]  Jack K. Wolf,et al.  On linear unequal error protection codes , 1967, IEEE Trans. Inf. Theory.

[4]  G. David Forney,et al.  Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference , 1972, IEEE Trans. Inf. Theory.

[5]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[6]  Peter No,et al.  Digital Coding of Waveforms , 1986 .

[7]  John H. Lodge,et al.  Maximum likelihood sequence estimation of CPM signals transmitted over Rayleigh flat-fading channels , 1990, IEEE Trans. Commun..

[8]  Daniel J. Costello,et al.  Bandwidth efficient coding for fading channels: code construction and performance analysis , 1989, IEEE Journal on Selected Areas in Communications.

[9]  James K. Cavers,et al.  Analysis of the error performance of trellis-coded modulations in Rayleigh-fading channels , 1992, IEEE Trans. Commun..

[10]  Lee-Fang Wei,et al.  Coded modulation with unequal error protection , 1993, IEEE Trans. Commun..

[11]  Tho Le-Ngoc,et al.  Coded-Modulation Techniques for Fading Channels , 1994 .

[12]  N. Seshadri,et al.  Multi-level block coded modulations for the Rayleigh fading channel , 1991, IEEE Global Telecommunications Conference GLOBECOM '91: Countdown to the New Millennium. Conference Record.

[13]  F. Davarian,et al.  Mobile digital communications via tone calibration , 1987, IEEE Transactions on Vehicular Technology.

[14]  Dariush Divsalar,et al.  Trellis Coded Modulation for 4800-9600 bits/s Transmission Over a Fading Mobile Satellite Channel , 1987, IEEE J. Sel. Areas Commun..

[15]  Shu Lin,et al.  Computer search for binary cyclic UEP codes of odd length up to 65 , 1990, IEEE Trans. Inf. Theory.

[16]  Thomas M. Cover,et al.  Broadcast channels , 1972, IEEE Trans. Inf. Theory.

[17]  Carl-Erik W. Sundberg,et al.  The performance of rate-compatible punctured convolutional codes for digital mobile radio , 1990, IEEE Trans. Commun..

[18]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[19]  Dariush Divsalar,et al.  The design of trellis coded MPSK for fading channels: set partitioning for optimum code design , 1988, IEEE Trans. Commun..

[20]  P. Noll,et al.  Effects of channel errors on the signal-to-noise performance of speech-encoding systems , 1975, The Bell System Technical Journal.

[21]  W.T. Webb Modulation methods for PCNs , 1992, IEEE Communications Magazine.

[22]  J. Bibb Cain,et al.  Punctured convolutional codes of rate (n-1)/n and simplified maximum likelihood decoding (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[23]  Peter J. McLane,et al.  Symbol-Aided Plus Decision-Directed Reception for PSK/TCM Modulation on Shadowed Mobile Satellite Fading Channels , 1992, IEEE J. Sel. Areas Commun..

[24]  A. Leon-Garcia,et al.  MODULATION ASYMMETRY / CODE COMPLEXITY TRADE-OFF FOR UNEQUAL ERROR PROTECTION , 1995, Proceedings of GLOBECOM '95.

[25]  R. Steele,et al.  Logarithmic PCM weighted QAM transmission over Gaussian and Rayleigh fading channels , 1987 .

[26]  John G. Proakis,et al.  Digital Communications , 1983 .

[27]  William Webb QAM: the modulation scheme for future mobile radio communications? , 1992 .

[28]  John H. Lodge,et al.  TCMP-a modulation and coding strategy for Rician fading channels , 1989, IEEE J. Sel. Areas Commun..

[29]  Nambirajan Seshadri,et al.  Multilevel codes for unequal error protection , 1993, IEEE Trans. Inf. Theory.

[30]  Carl-Erik W. Sundberg,et al.  Subband speech coding and matched convolutional channel coding for mobile radio channels , 1991, IEEE Trans. Signal Process..

[31]  Dariush Divsalar,et al.  The design of trellis coded MPSK for fading channels: performance criteria , 1988, IEEE Trans. Commun..

[32]  David J. Goodman,et al.  Second generation wireless information networks , 1991 .