First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can be carried out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a Maximum Entropy Method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to <1% and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (βs ∼ −2.5) near star-forming regions, especially in the plane, and steepest (βs ∼ −3) in the halo. This is consistent with a picture of relativistic cosmic ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are WMAP is the result of a partnership between Princeton University and NASA’s Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team. Code 685, Goddard Space Flight Center, Greenbelt, MD 20771 Science Systems and Applications, Inc. (SSAI), 10210 Greenbelt Road, Suite 600 Lanham, Maryland 20706 Dept. of Physics, Jadwin Hall, Princeton, NJ 08544 Dept of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 UCLA Astronomy, PO Box 951562, Los Angeles, CA 90095-1562 Dept. of Physics and Astronomy, University of British Columbia, Vancouver, BC Canada V6T 1Z1 National Research Council (NRC) Fellow Depts. of Astrophysics and Physics, EFI and CfCP, University of Chicago, Chicago, IL 60637 Dept. of Physics, Brown University, Providence, RI 02912

[1]  W. C. Erickson A Mechanism of Non-Thermal Radio-Noise Origin. , 1957 .

[2]  L. Oster Emission, Absorption, and Conductivity of a Fully Ionized Gas at Radio Frequencies , 1961 .

[3]  P. Schwartz The spectral dependence of dust emissivity at millimeter wavelengths , 1982 .

[4]  An investigation of the star-burst model for radio emission from Seyfert galaxies. , 1982 .

[5]  E. Salpeter,et al.  1.4 GHz continuum sources in the Hercules cluster , 1984 .

[6]  George Helou,et al.  Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies , 1985 .

[7]  D. Sanders,et al.  CO detections and IRAS observations of bright radio spiral galaxies at cz equal or less than 9000 kilometers per second , 1985 .

[8]  G. Gavazzi,et al.  On the Dependence of Far-Infrared and Radio Continuum Luminosities on Hubble Type in Spiral Galaxies , 1986 .

[9]  K. Lawson,et al.  Variations in the spectral index of the galactic radio continuum emission in the northern hemisphere , 1987 .

[10]  D. Sanders,et al.  21 centimeter survey of luminous infrared galaxies , 1988 .

[11]  D. A. Green,et al.  A revised reference catalogue of galactic supernova remnants , 1988 .

[12]  A two-temperature model for the infrared and radio emission from late-type galaxies , 1988 .

[13]  The relationship between the radio and far-infrared emission in IRAS galaxies: VLA observations of a large well-defined sample at 1420 MHz , 1989 .

[14]  G. Helou,et al.  The infrared-to-radio ratio within NGC 5236 (M83) and NGC 6946 , 1989 .

[15]  Nicholas A. Devereux,et al.  A reevaluation of the infrared-radio correlation for spiral galaxies , 1989 .

[16]  Implications of the correlation between radio and far-infrared emission for spiral galaxies , 1990, Monthly Notices of the Royal Astronomical Society.

[17]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[18]  E. L. Wright,et al.  Preliminary separation of galactic and cosmic microwave emission for the COBE Differential Microwave Radiometer , 1992 .

[19]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[20]  D. A. Green,et al.  Upper limits on the infrared flux density of the ‘filled-centre’ supernova remnant 3C58 , 1992 .

[21]  Alan E. Wright,et al.  The Parkes-MIT-NRAO (PMN) surveys. 2: Source catalog for the southern survey (delta greater than -87.5 deg and less than -37 deg) , 1994 .

[22]  R. Ekers,et al.  The Parkes-MIT-NRAO (PMN) surveys. 3: Source catalog for the tropical survey (-29 deg less than delta less than -9 deg .5) , 1994 .

[23]  R. Ekers,et al.  The Parkes-MIT-NRAO (PMN) surveys. 6: Source catalog for the equatorial survey (-9.5 deg less than delta less than +10.0 deg) , 1995 .

[24]  P. Gregory,et al.  The GB6 Catalog of Radio Sources , 1996 .

[25]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1996 .

[26]  S. Beckwith,et al.  Laboratory Results on Millimeter-Wave Absorption in Silicate Grain Materials at Cryogenic Temperatures , 1996 .

[27]  R. Ekers,et al.  The Parkes-MIT-NRAO (PMN) Surveys. VIII. Source Catalog for the Zenith Survey (-37.0 degrees < delta < -29.0 degrees ) , 1996 .

[28]  Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data - I. The sample , 1996, astro-ph/9602080.

[29]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[30]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[31]  B. Dennison,et al.  An Imaging Survey of Northern Galactic Hα Emission with Arcminute Resolution , 1998, Publications of the Astronomical Society of Australia.

[32]  Contribution of Bright Extragalactic Radio Sources to Microwave Anisotropy , 1998, astro-ph/9811311.

[33]  A. Lazarian,et al.  Electric Dipole Radiation from Spinning Dust Grains , 1998, astro-ph/9802239.

[34]  Paolo Giommi,et al.  The Deep X-Ray Radio Blazar Survey. I. Methods and First Results , 1998, astro-ph/9801024.

[35]  J. Brucato,et al.  Temperature Dependence of the Absorption Coefficient of Cosmic Analog Grains in the Wavelength Range 20 Microns to 2 Millimeters , 1998 .

[36]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[37]  L. Toffolatti,et al.  Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission , 1998 .

[38]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[39]  Magnetic Dipole Microwave Emission from Dust Grains , 1998, astro-ph/9807009.

[40]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[41]  D. Spergel,et al.  Extragalactic Foregrounds of the Cosmic Microwave Background: Prospects for the MAP Mission , 1998, astro-ph/9806349.

[42]  Max Tegmark,et al.  Foregrounds and Forecasts for the Cosmic Microwave Background , 2000 .

[43]  The Deep X-Ray Radio Blazar Survey (DXRBS) — II. New identifications , 2000, astro-ph/0012356.

[44]  Atsunori Yonehara,et al.  Publications of the Astronomical Society of Australia , 2000 .

[45]  L. Gurvits,et al.  The VSOP 5 GHz AGN Survey I. Compilation and Observations , 2000 .

[46]  Will Saunders,et al.  The PSCz catalogue , 1999, astro-ph/9909191.

[47]  J. Bernard,et al.  Submillimeter Mapping and Analysis of Cold Dust Condensations in the Orion M42 Star-forming Complex , 2001, astro-ph/0102407.

[48]  The radio source counts at 15 GHz and their implications for cm-wave CMB imaging , 2001, astro-ph/0102497.

[49]  D. Schlegel,et al.  Tentative detection of electric dipole emission from rapidly rotating dust grains , 2001, astro-ph/0109534.

[50]  D. Van Buren,et al.  A Robotic Wide‐Angle Hα Survey of the Southern Sky , 2001, astro-ph/0108518.

[51]  H. Teräsranta,et al.  Search for new flat-spectrum radio sources , 2001 .

[52]  Changbom Park,et al.  Effects of Foreground Contamination on the Cosmic Microwave Background Anisotropy Measured by MAP , 2001, astro-ph/0107004.

[53]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[54]  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[55]  G. Granato,et al.  Far infrared and radio emission in dusty starburst galaxies , 2002, astro-ph/0206029.

[56]  William H. Press,et al.  Numerical recipes in C , 2002 .

[57]  Emission line ratios and variations in temperature and ionization state in the diffuse ionized gas of five edge-on galaxies , 2002, astro-ph/0202495.

[58]  MICHELE LIMON,et al.  THE MAP SATELLITE FEED HORNS , 2002 .

[59]  Submillimeter dust emission of the M 17 complex measured with PRONAOS , 2002, astro-ph/0206337.

[60]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .

[61]  Edward J. Wollack,et al.  The Optical Design and Characterization of the Microwave Anisotropy Probe , 2003, astro-ph/0301160.

[62]  Douglas P. Finkbeiner,et al.  A Full-Sky Hα Template for Microwave Foreground Prediction , 2003, astro-ph/0301558.

[63]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[64]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.