Pairs trading with partial cointegration

Partial cointegration is a weakening of cointegration that allows for the ‘cointegrating’ residual to contain a random walk and a mean-reverting component. We derive its representation in state space, provide a maximum likelihood-based estimation routine, and a suitable likelihood ratio test. Then, we explore the use of partial cointegration as a means for identifying promising pairs and for generating buy and sell signals. Specifically, we benchmark partial cointegration against several classical pairs trading variants from 1990 until 2015, on a survivor bias free data-set of the S&P 500 constituents. We find annualized returns of more than 12% after transaction costs. These results can only partially be explained by common sources of systematic risk and are well superior to classical distance-based or cointegration-based pairs trading variants on our data-set.

[1]  Markus Leippold,et al.  International price and earnings momentum , 2009 .

[2]  \Losing Sight of the Trees for the Forest? Attention Shifts and Pairs Trading" , 2012 .

[3]  G. Papadakis Pairs Trading and Accounting Information , 2007 .

[4]  Nicolas Huck,et al.  Pairs trading and selection methods: is cointegration superior? , 2015 .

[5]  Ralf Östermark,et al.  Multivariate cointegration analysis of the Finnish-Japanese stock markets , 2001, Eur. J. Oper. Res..

[6]  Timofei Bogomolov,et al.  Pairs trading based on statistical variability of the spread process , 2013 .

[7]  Hossein Rad,et al.  The Profitability of Pairs Trading Strategies: Distance, Cointegration, and Copula Methods , 2015 .

[8]  David Neto,et al.  Estimation and Testing for the Cointegration Rank in a Threshold Cointegrated System , 2009 .

[9]  G. González-Farías,et al.  A comparison of unit root test criteria , 1994 .

[10]  G. Vidyamurthy Pairs Trading: Quantitative Methods and Analysis , 2004 .

[11]  James Davidson,et al.  Cointegration and error correction , 2013 .

[12]  Nicolas Huck,et al.  Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500 , 2017, Eur. J. Oper. Res..

[13]  Ozgur Ince,et al.  Individual Equity Return Data from Thomson Datastream: Handle with Care! , 2004 .

[14]  Nicolas Huck,et al.  Pairs trading and outranking: The multi-step-ahead forecasting case , 2010, Eur. J. Oper. Res..

[15]  Mark C. Hutchinson,et al.  Pairs trading in the UK equity market: risk and return , 2014 .

[16]  R. Faff,et al.  A New Approach to Modeling and Estimation for Pairs Trading , 2006 .

[17]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[18]  Matthew Clegg On the Persistence of Cointegration in Pairs Trading , 2014 .

[19]  John R. M. Hand,et al.  The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns , 2016 .

[20]  Adam V. Reed,et al.  Short-Selling Risk , 2016 .

[21]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[22]  L. Summers Does the Stock Market Rationally Reflect Fundamental Values , 1986 .

[23]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[24]  C. Bacon Practical Portfolio Performance Measurement and Attribution , 2004 .

[25]  W. K. Bertram A Non-Stationary Model for Statistical Arbitrage Trading , 2010 .

[26]  Nicolas Huck,et al.  Pairs selection and outranking: An application to the S&P 100 index , 2009, Eur. J. Oper. Res..

[27]  Clive W. J. Granger,et al.  An introduction to long-memory time series models and fractional differencing , 2001 .

[28]  John E. Warnock,et al.  Dynamic modeling , 1977, SIGGRAPH.

[29]  T. Hendershott,et al.  High Frequency Trading and Price Discovery , 2013, SSRN Electronic Journal.

[30]  Purnendu Nath,et al.  High Frequency Pairs Trading with U.S. Treasury Securities: Risks and Rewards for Hedge Funds , 2003 .

[31]  Clive W. J. Granger,et al.  Developments in the study of cointegrated economic variables , 2001 .

[32]  John Y. Campbell,et al.  Does Saving Anticipate Declining Labor Income? an Alternative Test of the Permanent Income Hypothesis , 1987 .

[33]  Nicolas Huck,et al.  Pairs trading: does volatility timing matter? , 2015 .

[34]  C. Granger,et al.  Co-integration and error correction: representation, estimation and testing , 1987 .

[35]  S. Johansen STATISTICAL ANALYSIS OF COINTEGRATION VECTORS , 1988 .

[36]  Johannes Stübinger,et al.  Non-linear dependence modelling with bivariate copulas: statistical arbitrage pairs trading on the S&P 100 , 2017 .

[37]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[38]  James Durbin,et al.  Time Series Analysis by State Space Methods: Second Edition , 2012 .

[39]  Christopher Krauss,et al.  Statistical Arbitrage Pairs Trading Strategies: Review and Outlook , 2017 .

[40]  C. Krauss,et al.  On the Power and Size Properties of Cointegration Tests in the Light of High-Frequency Stylized Facts , 2017 .

[41]  W. P. Malcolm,et al.  Pairs trading , 2005 .

[42]  Jing Zhao,et al.  Commodity derivatives pricing with cointegration and stochastic covariances , 2015, Eur. J. Oper. Res..

[43]  M. Rockinger,et al.  Estimating the price impact of trades in a high-frequency microstructure model with jumps. , 2015 .

[44]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[45]  Mark Cummins,et al.  Quantitative Spread Trading on Crude Oil and Refined Products Markets , 2011 .

[46]  Giovanni Montana,et al.  Dynamic modeling of mean-reverting spreads for statistical arbitrage , 2008, Comput. Manag. Sci..

[47]  Adrian Pizzinga,et al.  A pairs trading strategy based on linear state space models and the Kalman filter , 2016 .

[48]  Rita Laura D'Ecclesia,et al.  Term structure of interest rates and the expectation hypothesis: The euro area , 2008, Eur. J. Oper. Res..

[49]  P. D. Corbae,et al.  Cointegration and Tests of Purchasing Power Parity , 1988 .

[50]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[51]  João Caldeira,et al.  Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy , 2013 .

[52]  Greg N. Gregoriou Handbook of short selling , 2011 .

[53]  M. Avellaneda,et al.  Statistical arbitrage in the US equities market , 2010 .

[54]  S. Johansen,et al.  MAXIMUM LIKELIHOOD ESTIMATION AND INFERENCE ON COINTEGRATION — WITH APPLICATIONS TO THE DEMAND FOR MONEY , 2009 .

[55]  L. Spierdijk,et al.  Mean reversion in stock prices , 2017 .

[56]  H Lawrence,et al.  SUMMERS, . Does the Stock Market Rationally Reflect Fundamental Values?, The Journal of Finance, , . , 1986 .

[57]  Matthew Clegg,et al.  Modeling Time Series with Both Permanent and Transient Components Using the Partially Autoregressive Model , 2015 .

[58]  R. Engle,et al.  COINTEGRATION AND ERROR CORRECTION: REPRESENTATION , 1987 .

[59]  Martin Weber,et al.  On the Determinants of Pairs Trading Profitability , 2014 .

[60]  S. Johansen,et al.  Asymptotic Inference on Cointegrating Rank in Partial Systems , 1998 .

[61]  E. Fama,et al.  A Five-Factor Asset Pricing Model , 2014 .

[62]  H. Johnson,et al.  A comparison of 'traditional' and multimedia information systems development practices , 2003, Inf. Softw. Technol..

[63]  William N. Goetzmann,et al.  Pairs Trading: Performance of a Relative Value Arbitrage Rule , 1998 .

[64]  E. Fama,et al.  International Tests of a Five-Factor Asset Pricing Model , 2015 .

[65]  Eduardo S. Schwartz,et al.  Short-Term Variations and Long-Term Dynamics in Commodity Prices , 2000 .

[66]  Charles M. Jones,et al.  A Century of Stock Market Liquidity and Trading Costs , 2002 .

[67]  R. Jagannathan,et al.  An Anatomy of Pairs Trading: The Role of Idiosyncratic News, Common Information and Liquidity , 2008 .

[68]  R. Faff,et al.  Does Simple Pairs Trading Still Work? , 2010 .

[69]  Bruce E. Hansen,et al.  THRESHOLD AUTOREGRESSION WITH A UNIT ROOT , 2001 .

[70]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[71]  Eric Jondeau,et al.  Estimating the Price Impact of Trades in an High-Frequency Microstructure Model with Jumps , 2015 .

[72]  R. Faff,et al.  Are Pairs Trading Profits Robust to Trading Costs , 2012 .

[73]  Jason Laws,et al.  Statistical Arbitrage and High-Frequency Data with an Application to Eurostoxx 50 Equities , 2010 .

[74]  Wei Xiongb,et al.  Investor attention , overconfidence and category learning , 2006 .