Cytonuclear discordance in the Florida Everglades invasive Burmese python (Python bivittatus) population reveals possible hybridization with the Indian python (P. molurus)

Abstract The invasive Burmese python (Python bivittatus) has been reproducing in the Florida Everglades since the 1980s. These giant constrictor snakes have caused a precipitous decline in small mammal populations in southern Florida following escapes or releases from the commercial pet trade. To better understand the invasion pathway and genetic composition of the population, two mitochondrial (mtDNA) loci across 1,398 base pairs were sequenced on 426 snakes and 22 microsatellites were assessed on 389 snakes. Concatenated mtDNA sequences produced six haplotypes with an average nucleotide and haplotype diversity of π = 0.002 and h = 0.097, respectively. Samples collected in Florida from morphologically identified P. bivittatus snakes were similar to published cytochrome oxidase 1 and cytochrome b sequences from both P. bivittatus and Python molurus and were highly divergent (genetic distances of 5.4% and 4.3%, respectively). The average number of microsatellite alleles and expected heterozygosity were N A = 5.50 and H E = 0.60, respectively. Nuclear Bayesian assignment tests supported two genetically distinct groups and an admixed group, not geographically differentiated. The effective population size (N E = 315.1) was lower than expected for a population this large, but reflected the low genetic diversity overall. The patterns of genetic diversity between mtDNA and microsatellites were disparate, indicating nuclear introgression of separate mtDNA lineages corresponding to cytonuclear discordance. The introgression likely occurred prior to the invasion, but genetic information on the native range and commercial trade is needed for verification. Our finding that the Florida python population is comprised of distinct lineages suggests greater standing variation for adaptation and the potential for broader areas of suitable habitat in the invaded range.

[1]  J. Hellmann,et al.  Climate-mediated hybrid zone movement revealed with genomics, museum collection, and simulation modeling , 2018, Proceedings of the National Academy of Sciences.

[2]  A. Petrusek,et al.  Divergent clades or cryptic species? Mito-nuclear discordance in a Daphnia species complex , 2017, BMC Evolutionary Biology.

[3]  Kristen M. Hart,et al.  Urbanization may limit impacts of an invasive predator on native mammal diversity , 2017 .

[4]  Dana H. Ikeda,et al.  Genetically informed ecological niche models improve climate change predictions , 2017, Global change biology.

[5]  L. Rieseberg,et al.  Genetic admixture and heterosis may enhance the invasiveness of common ragweed , 2016, Evolutionary applications.

[6]  Jianzhang Ma,et al.  Genetic diversity and population genetic structure of Python bivittatus in China , 2016, Journal of Forestry Research.

[7]  Kristen M. Hart,et al.  Invasive pythons, not anthropogenic stressors, explain the distribution of a keystone species , 2016, Biological Invasions.

[8]  Frank J. Mazzotti,et al.  Betrayal: radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park , 2016, Biological Invasions.

[9]  Nathan A. Johnson,et al.  Generic reclassification and species boundaries in the rediscovered freshwater mussel ‘Quadrula’ mitchelli (Simpson in Dall, 1896) , 2016, Conservation Genetics.

[10]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[11]  Gul Hassan,et al.  Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling , 2015, Global change biology.

[12]  K. McKelvey,et al.  The Dual Challenges of Generality and Specificity When Developing Environmental DNA Markers for Species and Subspecies of Oncorhynchus , 2015, PloS one.

[13]  N. Gotelli,et al.  Climate change, genetic markers and species distribution modelling , 2015 .

[14]  David Bryant,et al.  popart: full‐feature software for haplotype network construction , 2015 .

[15]  P. Pompeu,et al.  Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin , 2015, Genetica.

[16]  Dan G. Bock,et al.  What we still don't know about invasion genetics , 2015, Molecular ecology.

[17]  Kristen M. Hart,et al.  Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades , 2015, Proceedings of the Royal Society B: Biological Sciences.

[18]  Brian J. Smith,et al.  Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons , 2015, PloS one.

[19]  Brian J. Smith,et al.  Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA , 2015, Animal Biotelemetry.

[20]  D. Schemske,et al.  Heterosis and outbreeding depression in crosses between natural populations of Arabidopsis thaliana , 2015, Heredity.

[21]  A. Burt,et al.  Estimating Effective Population Size from Temporally Spaced Samples with a Novel, Efficient Maximum-Likelihood Algorithm , 2015, Genetics.

[22]  J. Darling Genetic studies of aquatic biological invasions: closing the gap between research and management , 2015, Biological Invasions.

[23]  Margaret Byrne,et al.  Biological invasions, climate change and genomics , 2014, Evolutionary applications.

[24]  R. Hanner,et al.  Calibrating Snakehead Diversity with DNA Barcodes: Expanding Taxonomic Coverage to Enable Identification of Potential and Established Invasive Species , 2014, PloS one.

[25]  Brian J. Smith,et al.  Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes , 2014, Biology Letters.

[26]  A. Piaggio,et al.  Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA , 2014, Molecular ecology resources.

[27]  L. Revell,et al.  Toward a Tree-of-Life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling. , 2014, Molecular phylogenetics and evolution.

[28]  R. Zappalorti,et al.  Return of the pythons: first formal records, with a special note on recovery of the Burmese python in the demilitarized Kinmen islands , 2013, Zoological Studies.

[29]  F. Spaccesi Abundance, recruitment, and shell growth of the exotic mussel Limnoperna fortunei in the Río de la Plata (Argentina) , 2013, Zoological Studies.

[30]  Sujeevan Ratnasingham,et al.  A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System , 2013, PloS one.

[31]  U. Schliewen,et al.  Successive Invasion-Mediated Interspecific Hybridizations and Population Structure in the Endangered Cichlid Oreochromis mossambicus , 2013, PloS one.

[32]  K. McKelvey,et al.  Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity , 2013, PloS one.

[33]  Kristen M. Hart,et al.  Rapid Microsatellite Marker Development Using Next Generation Pyrosequencing to Inform Invasive Burmese Python—Python molurus bivittatus—Management , 2013, International journal of molecular sciences.

[34]  B. Dubey,et al.  Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae) , 2012, Molecular Biology Reports.

[35]  Christina M. Romagosa,et al.  Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park , 2012, Proceedings of the National Academy of Sciences.

[36]  Samuel E. Fox,et al.  A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus) , 2011, BMC Research Notes.

[37]  Michael E. Dorcas,et al.  Identifying plausible scenarios for the establishment of invasive Burmese pythons (Python molurus) in Southern Florida , 2011, Biological Invasions.

[38]  Kristen M. Hart,et al.  A field test of attractant traps for invasive Burmese pythons (Python molurus bivittatus) in southern Florida , 2011 .

[39]  Nathan A. Johnson,et al.  Homogeneity at nuclear microsatellite loci masks mitochondrial haplotype diversity in the endangered fanshell pearlymussel (Cyprogenia stegaria). , 2011, The Journal of heredity.

[40]  A. Hoffmann,et al.  Climate change and evolutionary adaptation , 2011, Nature.

[41]  R. Snow,et al.  Birds Consumed by the Invasive Burmese Python (Python molurus bivittatus) in Everglades National Park, Florida, USA , 2011 .

[42]  Jinliang Wang coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients , 2011, Molecular ecology resources.

[43]  Kristen M. Hart,et al.  Risk assessment of potential invasiveness of exotic reptiles imported to south Florida , 2010, Biological Invasions.

[44]  W. Sherwin,et al.  Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of the microsatellite structure , 2010, Conservation Genetics.

[45]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[46]  W. Schleip,et al.  Annotated checklist of the recent and extinct pythons (Serpentes, Pythonidae), with notes on nomenclature, taxonomy, and distribution , 2010, ZooKeys.

[47]  O. Vidal,et al.  Origin and genetic diversity of mosquitofish (Gambusia holbrooki) introduced to Europe , 2010, Biological Invasions.

[48]  M. McPhee,et al.  Genealogical Diversity Suggests Multiple Introductions of White Suckers (Catostomus commersonii) Into the Rio Grande, New Mexico , 2009 .

[49]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[50]  Gordon H. Rodda,et al.  What parts of the US mainland are climatically suitable for invasive alien pythons spreading from Everglades National Park? , 2009, Biological Invasions.

[51]  P. Taberlet,et al.  Species detection using environmental DNA from water samples , 2008, Biology Letters.

[52]  R. Waples,et al.  ldne: a program for estimating effective population size from data on linkage disequilibrium , 2008, Molecular ecology resources.

[53]  T. Burke,et al.  A high‐throughput protocol for extracting high‐purity genomic DNA from plants and animals , 2008, Molecular ecology resources.

[54]  J. Losos,et al.  Multiple Sources, Admixture, and Genetic Variation in Introduced Anolis Lizard Populations , 2007, Conservation biology : the journal of the Society for Conservation Biology.

[55]  L. Rissler,et al.  Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). , 2007, Systematic biology.

[56]  J. Darling,et al.  Paradox lost: genetic diversity and the success of aquatic invasions. , 2007, Trends in ecology & evolution.

[57]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[58]  Aaron P. Wagner,et al.  ml‐relate: a computer program for maximum likelihood estimation of relatedness and relationship , 2006 .

[59]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[60]  R. Waples,et al.  A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci* , 2006, Conservation Genetics.

[61]  Ellen G. Williamson-Natesan Comparison of methods for detecting bottlenecks from microsatellite loci , 2006, Conservation Genetics.

[62]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[63]  Y. Kumazawa,et al.  Complete Mitochondrial DNA Sequences of Six Snakes: Phylogenetic Relationships and Molecular Evolution of Genomic Features , 2005, Journal of Molecular Evolution.

[64]  Brian P. Dreher,et al.  genecap: a program for analysis of multilocus genotype data for non‐invasive sampling and capture‐recapture population estimation , 2004 .

[65]  J. Cornuet,et al.  GENECLASS2: a software for genetic assignment and first-generation migrant detection. , 2004, The Journal of heredity.

[66]  J. Losos,et al.  Genetic variation increases during biological invasion by a Cuban lizard , 2004, Nature.

[67]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[68]  O. Seehausen Hybridization and adaptive radiation. , 2004, Trends in ecology & evolution.

[69]  Arnaud Estoup,et al.  Genetic assignment methods for the direct, real‐time estimation of migration rate: a simulation‐based exploration of accuracy and power , 2004, Molecular ecology.

[70]  D. J. Funk,et al.  Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA , 2003 .

[71]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[72]  M. Banks,et al.  New tetranucleotide microsatellites for fine‐scale discrimination among endangered chinook salmon (Oncorhynchus tshawytscha) , 2003 .

[73]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[74]  J. Breeuwer,et al.  Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus , 2003, Heredity.

[75]  Gary R. Carvalho,et al.  Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Lawson,et al.  Snake phylogeny: evidence from nuclear and mitochondrial genes. , 2002, Molecular phylogenetics and evolution.

[77]  S. Donnellan,et al.  Microsatellite primers for Australian and New Guinean pythons isolated with an efficient marker development method for related species , 2002 .

[78]  J. Garza,et al.  Detection of reduction in population size using data from microsatellite loci , 2001, Molecular ecology.

[79]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[80]  P. Taberlet,et al.  Non-invasive genetic sampling and individual identification , 1999 .

[81]  M. Lynch,et al.  Estimation of pairwise relatedness with molecular markers. , 1999, Genetics.

[82]  G. Luikart,et al.  Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data , 1999 .

[83]  R. Nichols,et al.  Interpreting DNA Evidence: Statistical Genetics for Forensic Scientists , 1999, Heredity.

[84]  I. Stirling,et al.  Microsatellite analysis of population structure in Canadian polar bears , 1995, Molecular ecology.

[85]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[86]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[87]  C. Strobeck,et al.  Microsatellite analysis of genetic variation in black bear populations , 1994, Molecular ecology.

[88]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[89]  K. Tamura,et al.  Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. , 1992, Molecular biology and evolution.

[90]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[91]  M. Nei,et al.  Estimation of evolutionary distance between nucleotide sequences. , 1984, Molecular biology and evolution.

[92]  G. Luikart,et al.  BOTTLENECK : A Computer Program for Detecting Recent Reductions in the Effective Population Size Using Allele Frequency Data , 2017 .

[93]  J. Willson,et al.  Python molurus bivittatus (Burmese python). Minimum size at maturity , 2014 .

[94]  Elizabeth Cowles Review: Boas and Pythons of the World , 2012 .

[95]  L. Leinwand,et al.  Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation. , 2011, Physiological genomics.

[96]  Kristen M. Hart,et al.  Cold-induced mortality of invasive Burmese pythons in south Florida , 2010, Biological Invasions.

[97]  W. Böhme,et al.  Zur Taxonomie des Dunklen Tigerpythons, Python molurus bivittatus KUHL, 1820, speziell der Population von Sulawesi , 2009 .

[98]  R. Snow,et al.  Dietary habits of the Burmese python, Python molurus bivittatus, in Everglades National Park, Florida , 2007 .

[99]  Carol A. Stepien,et al.  Invasion Genetics of Ponto-Caspian Gobies in the Great Lakes: A ‘Cryptic’ Species, Absence of Founder Effects, and Comparative Risk Analysis , 2005, Biological Invasions.

[100]  Diego P. Vázquez,et al.  Species-area curves, homogenization and the loss of global diversity , 2002 .

[101]  W. E. Meshaka,et al.  An annotated inventory of the herpetofauna of Everglades National Park, Florida , 2000 .

[102]  R. Mcdiarmid,et al.  Snake species of the world : a taxonomic and geographic reference. Vol. 1. , 1999 .

[103]  H. Kuhl,et al.  Beiträge zur Zoologie und vergleichenden Anatomie , 1820 .