Normal Vector Based Subdivision Scheme to Generate Fractal Curves

In this paper, we firstly devise a new and general p-ary subdivision scheme based on normal vectors with multi-parameters to generate fractals. Rich and colorful fractals including some known fractals and a lot of unknown ones can be generated directly and conveniently by using it uniformly. The method is easy to use and effective in generating fractals since the values of the parameters and the directions of normal vectors can be designed freely to control the shape of generated fractals. Secondly, we illustrate the technique with some design results of fractal generation and the corresponding fractal examples from the point of view of visualization, including the classical Levy curves, Dragon curves, Sierpinski gasket, Koch curve, Koch-type curves and other fractals. Finally, some fractal properties of the limit of the presented subdivision scheme, including existence, self-similarity, non-rectifiability, and continuity but nowhere differentiability are described from the point of view of theoretical analysis. DOI: http://dx.doi.org/10.11591/telkomnika.v11i8.302 5

[1]  Hujun Bao,et al.  Interpolatory -Subdivision Surfaces , 2004 .

[2]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[3]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[4]  Neil A. Dodgson,et al.  An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..

[5]  M. Barnsley,et al.  Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[7]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[8]  G. A. Edgar Classics On Fractals , 2019 .

[9]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[10]  Kaihuai Qin,et al.  Surface modeling with ternary interpolating subdivision , 2005, The Visual Computer.

[11]  John Hart,et al.  ACM Transactions on Graphics: Editorial , 2003, SIGGRAPH 2003.

[12]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[13]  Feng Xu,et al.  Fractal properties of the generalized Chaikin corner-cutting subdivision scheme , 2011, Comput. Math. Appl..

[14]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[15]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[16]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[17]  Xiaodong Liu,et al.  Fractal properties of interpolatory subdivision schemes and their application in fractal generation , 2007 .

[18]  Zhenglin Ye,et al.  Fractal range of a 3-point ternary interpolatory subdivision scheme with two parameters , 2007 .

[19]  Curtis T. McMullen,et al.  The Hausdorff dimension of general Sierpiński carpets , 1984, Nagoya Mathematical Journal.