Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disease, caused by the loss of motor neurons in the brain and spinal cord. Although 10% of ALS cases are familial (FALS), the majority are sporadic (SALS) and probably associated to a multifactorial etiology. Currently there is no cure or prevention for ALS. A prerequisite to formulating therapeutic strategies is gaining understanding of its etio-pathogenic mechanisms. In this study we analyzed whole-genome expression profiles of 41 motor cortex samples of control (10) and sporadic ALS (31) patients. Unsupervised hierarchical clustering was able to separate control from SALS patients. In addition, SALS patients were subdivided in two different groups that were associated to different deregulated pathways and genes, some of which were previously associated to familiar ALS. These experiments are the first to highlight the genomic heterogeneity of sporadic ALS and reveal new clues to its pathogenesis and potential therapeutic targets.

[1]  C. Armon Environmental Risk Factors for Amyotrophic Lateral Sclerosis , 2001, Neuroepidemiology.

[2]  J. Huot,et al.  Ephrin signaling in axon guidance , 2004, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[3]  J. Julien,et al.  Cycling at the interface between neurodevelopment and neurodegeneration , 2002, Cell Death and Differentiation.

[4]  Asako Koike,et al.  A mutation database for amyotrophic lateral sclerosis , 2010, Human mutation.

[5]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[6]  J. Connor,et al.  Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex , 2006, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[7]  Karunya K. Kandimalla,et al.  Activation of the stress-activated MAP kinase, p38, but not JNK in cortical motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in transgenic mice , 2005, Brain Research.

[8]  Ammar Al-Chalabi,et al.  Clinical genetics of amyotrophic lateral sclerosis: what do we really know? , 2011, Nature Reviews Neurology.

[9]  Han-Jou Chen,et al.  Characterization of the Properties of a Novel Mutation in VAPB in Familial Amyotrophic Lateral Sclerosis , 2010, The Journal of Biological Chemistry.

[10]  D. Price,et al.  Amyotrophc Lateral Sclerosis: Alterations in Neurotransmitter Receptors , 2004 .

[11]  Q. Zhu,et al.  Protective effect of neurofilament heavy gene overexpression in motor neuron disease induced by mutant superoxide dismutase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[13]  M. Dubois‐Dauphin,et al.  Bax and Bcl‐2 Interaction in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis , 1999, Journal of neurochemistry.

[14]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[15]  M. Yamauchi,et al.  Decreased type IV collagen of skin and serum in patients with amyotrophic lateral sclerosis , 1998, Neurology.

[16]  A. Ferguson,et al.  Adiponectin modulates excitability of rat paraventricular nucleus neurons by differential modulation of potassium currents. , 2010, Endocrinology.

[17]  B. Crain,et al.  Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34. , 1998, American journal of human genetics.

[18]  S. Sasaki Autophagy in Spinal Cord Motor Neurons in Sporadic Amyotrophic Lateral Sclerosis , 2011, Journal of neuropathology and experimental neurology.

[19]  Rüdiger Klein,et al.  Eph/ephrin signaling in morphogenesis, neural development and plasticity. , 2004, Current opinion in cell biology.

[20]  Alexander R. Abbas,et al.  Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data , 2005, Genes and Immunity.

[21]  Martina Wiedau-Pazos,et al.  Integrative gene-tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. , 2010, Human molecular genetics.

[22]  D. Michel,et al.  [Fatal peripheral neuropathy with predominant motor involvement associated with anti-MAG IgM monoclonal gammapathy]. , 1993, Revue neurologique.

[23]  E. Melamed,et al.  Spinal Cord mRNA Profile in Patients with ALS: Comparison with Transgenic Mice Expressing the Human SOD-1 Mutant , 2009, Journal of Molecular Neuroscience.

[24]  M. Tohyama,et al.  Familiar amyotrophic lateral sclerosis (FALS)-linked SOD1 mutation accelerates neuronal cell death by activating cleavage of caspase-4 under ER stress in an in vitro model of FALS , 2010, Neurochemistry International.

[25]  A. Al-Chalabi,et al.  Keeping up with genetic discoveries in amyotrophic lateral sclerosis: The ALSoD and ALSGene databases , 2011, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[26]  B. Pettmann,et al.  Programmed Cell Death of Embryonic Motoneurons Triggered through the FAS Death Receptor , 1999, The Journal of cell biology.

[27]  S. Ennis,et al.  ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis , 2006, Nature Genetics.

[28]  Hiroshi Nishimune,et al.  Motoneuron Death Triggered by a Specific Pathway Downstream of Fas Potentiation by ALS-Linked SOD1 Mutations , 2002, Neuron.

[29]  E. Feldman,et al.  Vascular endothelial growth factor prevents G93A‐SOD1‐induced motor neuron degeneration , 2009, Developmental neurobiology.

[30]  Robert H. Brown,et al.  Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. , 2009, American journal of human genetics.

[31]  G. Bernardi,et al.  Molecular and synaptic changes in the hippocampus underlying superior spatial abilities in pre-symptomatic G93A+/+ mice overexpressing the human Cu/Zn superoxide dismutase (Gly93 → ALA) mutation , 2006, Experimental Neurology.

[32]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[33]  Sean Ekins,et al.  A novel method for generation of signature networks as biomarkers from complex high throughput data. , 2005, Toxicology letters.

[34]  G. Bernardi,et al.  Postsynaptic alteration of NR2A subunit and defective autophosphorylation of alphaCaMKII at threonine-286 contribute to abnormal plasticity and morphology of upper motor neurons in presymptomatic SOD1G93A mice, a murine model for amyotrophic lateral sclerosis. , 2011, Cerebral cortex.

[35]  S. Petri,et al.  Distribution of GABAA Receptor mRNA in the Motor Cortex of ALS Patients , 2003, Journal of neuropathology and experimental neurology.

[36]  G. Stephanopoulos,et al.  Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter. , 2004, Physiological genomics.

[37]  Yuxin Fan,et al.  Sporadic ALS has compartment-specific aberrant exon splicing and altered cell–matrix adhesion biology , 2009, Human molecular genetics.

[38]  J. Loeb,et al.  Differential distribution of neuregulin in human brain and spinal fluid , 2009, Brain Research.

[39]  R. Deane,et al.  ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration , 2008, Nature Neuroscience.

[40]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[41]  R. Tapia,et al.  Delayed administration of VEGF rescues spinal motor neurons from death with a short effective time frame in excitotoxic experimental models in vivo , 2012, ASN neuro.

[42]  J. H. Boo,et al.  The failure of mitochondria leads to neurodegeneration: Do mitochondria need a jump start? , 2009, Advanced drug delivery reviews.

[43]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[44]  L. Tessarollo,et al.  Deletion of the BDNF Truncated Receptor TrkB.T1 Delays Disease Onset in a Mouse Model of Amyotrophic Lateral Sclerosis , 2012, PloS one.

[45]  Olubunmi Abel,et al.  ALSoD: A user‐friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics , 2012, Human mutation.

[46]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[47]  J. Loeb,et al.  Aberrant Neuregulin 1 Signaling in Amyotrophic Lateral Sclerosis , 2012, Journal of neuropathology and experimental neurology.

[48]  I. Kruman Why do Neurons Enter the Cell Cycle? , 2004, Cell cycle.

[49]  J. Lowe,et al.  Amyotrophic lateral sclerosis: current issues in classification, pathogenesis and molecular pathology. , 1998, Neuropathology and applied neurobiology.

[50]  D. Belsham,et al.  Adipokine Gene Expression in a Novel Hypothalamic Neuronal Cell Line: Resistin-Dependent Regulation of Fasting-Induced Adipose Factor and SOCS-3 , 2007, Neuroendocrinology.

[51]  A. Spalloni,et al.  Role of the N-methyl-d-aspartate receptors complex in amyotrophic lateral sclerosis. , 2013, Biochimica et biophysica acta.

[52]  M. Michalopoulou,et al.  Interleukin‐17 and interleukin‐23 are elevated in serum and cerebrospinal fluid of patients with ALS: a reflection of Th17 cells activation? , 2010, Acta neurologica Scandinavica.

[53]  N. Harel,et al.  Reticulon-4A (Nogo-A) Redistributes Protein Disulfide Isomerase to Protect Mice from SOD1-Dependent Amyotrophic Lateral Sclerosis , 2009, The Journal of Neuroscience.

[54]  G. Sobue,et al.  Gene Expressions Specifically Detected in Motor Neurons (Dynactin 1, Early Growth Response 3, Acetyl-CoA Transporter, Death Receptor 5, and Cyclin C) Differentially Correlate to Pathologic Markers in Sporadic Amyotrophic Lateral Sclerosis , 2007, Journal of neuropathology and experimental neurology.

[55]  Sebastiano Cavallaro,et al.  Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis , 2007, BMC Genomics.

[56]  Robert H. Brown,et al.  Superoxide Dismutase Activity, Oxidative Damage, and Mitochondrial Energy Metabolism in Familial and Sporadic Amyotrophic Lateral Sclerosis , 1993, Journal of neurochemistry.

[57]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[58]  M. Fernando,et al.  Expression of Vascular Endothelial Growth Factor and Its Receptors in the Central Nervous System in Amyotrophic Lateral Sclerosis , 2006, Journal of neuropathology and experimental neurology.

[59]  S. Hadano,et al.  A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 , 2001, Nature Genetics.

[60]  Yasushi Hiraoka,et al.  Mutations in Dynein Link Motor Neuron Degeneration to Defects in Retrograde Transport , 2003, Science.

[61]  E. Stefani,et al.  Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel α1 subunit , 1994 .

[62]  M. Cozzolino,et al.  The Proinflammatory Action of Microglial P2 Receptors Is Enhanced in SOD1 Models for Amyotrophic Lateral Sclerosis1 , 2009, The Journal of Immunology.

[63]  Margaret A. Johnson,et al.  Mitochondrial enzyme activity in amyotrophic lateral sclerosis: Implications for the role of mitochondria in neuronal cell death , 1999, Annals of neurology.

[64]  D. Leppert,et al.  Matrix metalloproteinases in neuromuscular disease , 2007, Muscle & nerve.

[65]  M. Mattson,et al.  Adiponectin protects rat hippocampal neurons against excitotoxicity , 2011, AGE.

[66]  D. C. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1993, Nature.

[67]  M. Mattson,et al.  DNA damage responses in neural cells: Focus on the telomere , 2007, Neuroscience.

[68]  R. Bowser,et al.  DECREASED mRNA EXPRESSION OF TIGHT JUNCTION PROTEINS IN LUMBAR SPINAL CORDS OF PATIENTS WITH ALS , 2009, Neurology.

[69]  P. Carmeliet,et al.  VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death , 2003, Nature Genetics.

[70]  L. Defebvre,et al.  Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? , 2005, Neurology.

[71]  J. Wands,et al.  P53- and CD95-associated apoptosis in neurodegenerative diseases. , 1998, Laboratory investigation; a journal of technical methods and pathology.

[72]  Y. Itoyama,et al.  Intrathecal Delivery of Hepatocyte Growth Factor From Amyotrophic Lateral Sclerosis Onset Suppresses Disease Progression in Rat Amyotrophic Lateral Sclerosis Model , 2007, Journal of neuropathology and experimental neurology.

[73]  M. Beal,et al.  Loss of Fas ligand-function improves survival in G93A-transgenic ALS mice , 2006, Journal of the Neurological Sciences.

[74]  W. Robberecht,et al.  Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis , 2005, Neuroreport.

[75]  Claire L. Simpson,et al.  Amyotrophic lateral sclerosis as a complex genetic disease. , 2006, Biochimica et biophysica acta.

[76]  P. Demetter,et al.  Impaired blood–brain and blood–spinal cord barriers in mutant SOD1-linked ALS rat , 2009, Brain Research.

[77]  A. Malaspina,et al.  Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays , 2001, Journal of neurochemistry.

[78]  Toshikazu Nakamura,et al.  Hepatocyte growth factor (HGF) attenuates gliosis and motoneuronal degeneration in the brainstem motor nuclei of a transgenic mouse model of ALS , 2007, Neuroscience Research.

[79]  I. Niebroj-Dobosz,et al.  Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis , 2010, European journal of neurology.

[80]  R. Clatterbuck,et al.  Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo , 1993, Neuron.

[81]  K. Abe,et al.  Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis , 2011, Journal of neuroscience research.

[82]  S. Imran,et al.  Adipokine Gene Expression in Brain and Pituitary Gland , 2007, Neuroendocrinology.

[83]  C. Cheroni,et al.  Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: Implication for protein aggregation and immune response , 2012, Progress in Neurobiology.

[84]  M. Strong,et al.  Innate immunity in amyotrophic lateral sclerosis. , 2006, Biochimica et biophysica acta.

[85]  G. Bernardi,et al.  SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis , 2010, Brain : a journal of neurology.

[86]  P. Spano,et al.  Leptin Is Induced in the Ischemic Cerebral Cortex and Exerts Neuroprotection Through NF-&kgr;B/c-Rel–Dependent Transcription , 2009, Stroke.

[87]  D. Cleveland,et al.  Slowing of axonal transport is a very early event in the toxicity of ALS–linked SOD1 mutants to motor neurons , 1999 .

[88]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[89]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[90]  K. Herrup,et al.  Divide and Die: Cell Cycle Events as Triggers of Nerve Cell Death , 2004, The Journal of Neuroscience.

[91]  S. Niclou,et al.  The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease , 2006, Molecular and Cellular Neuroscience.

[92]  E. Shohami,et al.  Neurodegeneration Induces Upregulation of Beclin 1 , 2006, Autophagy.

[93]  G. Coppola,et al.  Low doses of TRH in amyotrophic lateral sclerosis and in other neurological diseases , 1991, The Italian Journal of Neurological Sciences.

[94]  E. Beghi,et al.  The epidemiology of ALS and the role of population-based registries. , 2006, Biochimica et biophysica acta.

[95]  Ichiro Kanazawa,et al.  Glutamate receptors: RNA editing and death of motor neurons , 2004, Nature.

[96]  P. V. van Rijen,et al.  Distribution, characterization and clinical significance of microglia in glioneuronal tumours from patients with chronic intractable epilepsy , 2005, Neuropathology and applied neurobiology.

[97]  E. Stefani,et al.  Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel alpha 1 subunit. , 1994, Annals of neurology.

[98]  M. Tsumura,et al.  Decreased plasma levels of fibronectin in amyotrophic lateral sclerosis , 2000, Acta neurologica Scandinavica.

[99]  Woong Sun,et al.  Overexpression of HGF Retards Disease Progression and Prolongs Life Span in a Transgenic Mouse Model of ALS , 2002, The Journal of Neuroscience.

[100]  P. Liesi,et al.  Selective overexpression of γ1 laminin in astrocytes in amyotrophic lateral sclerosis indicates an involvement in ALS pathology , 2007, Journal of neuroscience research.

[101]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[102]  Paul G. Ince,et al.  Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS) , 2010, PloS one.

[103]  I. Vincent,et al.  The cell cycle and human neurodegenerative disease. , 2003, Progress in cell cycle research.

[104]  S. Lorenzl,et al.  Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases , 2003, Journal of the Neurological Sciences.

[105]  E. Aronica,et al.  Immunohistochemical localization of vascular endothelial growth factor receptors‐1, ‐2 and ‐3 in human spinal cord: altered expression in amyotrophic lateral sclerosis , 2004, Neuropathology and applied neurobiology.

[106]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[107]  B. Tang,et al.  Nogo-A and Nogo-66 receptor in amyotrophic lateral sclerosis , 2008, Journal of cellular and molecular medicine.

[108]  L. Greene,et al.  Cell cycle molecules and vertebrate neuron death: E2F at the hub , 2004, Cell Death and Differentiation.

[109]  Esther B. E. Becker,et al.  Cell cycle regulation of neuronal apoptosis in development and disease , 2004, Progress in Neurobiology.

[110]  M. Gurney,et al.  Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS , 1998 .

[111]  D. Maraganore,et al.  Beyond Parkinson Disease: Amyotrophic Lateral Sclerosis and the Axon Guidance Pathway , 2008, PloS one.

[112]  J. Seeburger,et al.  Experimental Rationale for the Therapeutic Use of Neurotrophins in Amyotrophic Lateral Sclerosis , 1993, Experimental Neurology.

[113]  R. Pasterkamp,et al.  Axon guidance proteins: Novel therapeutic targets for ALS? , 2009, Progress in Neurobiology.

[114]  A. Kakita,et al.  Neuropathology with Clinical Correlations of Sporadic Amyotrophic Lateral Sclerosis: 102 Autopsy Cases Examined Between 1962 and 2000 , 2003, Brain pathology.

[115]  L. Defebvre,et al.  Elevated IL-6 and TNF-α levels in patients with ALS: Inflammation or hypoxia? , 2005, Neurology.

[116]  R. Vos,et al.  Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis , 2003, The Lancet.

[117]  Q. Zhu,et al.  Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[118]  I. Joo,et al.  Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice , 2009, Gene Therapy.

[119]  Dong-Hoon Shin,et al.  Immunohistochemical study on the distribution of insulin-like growth factor I (IGF-I) receptor in the central nervous system of SOD1G93A mutant transgenic mice , 2003, Brain Research.

[120]  B. Fadeel,et al.  Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS , 2004, Annals of neurology.

[121]  Bo Yang,et al.  Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model , 2011, Glia.

[122]  K. Herrup,et al.  Cell division in the CNS: protective response or lethal event in post-mitotic neurons? , 2007, Biochimica et biophysica acta.

[123]  R. Nitsch,et al.  Potential role of LIF as a modifier gene in the pathogenesis of amyotrophic lateral sclerosis , 2000, Neurology.

[124]  J. Julien,et al.  A neurotoxic peripherin splice variant in a mouse model of ALS , 2003, The Journal of cell biology.

[125]  F. Baas,et al.  Innate and adaptive immunity in amyotrophic lateral sclerosis: Evidence of complement activation , 2011, Neurobiology of Disease.

[126]  M. Shoji,et al.  Intrathecal injection of epidermal growth factor and fibroblast growth factor 2 promotes proliferation of neural precursor cells in the spinal cords of mice with mutant human SOD1 gene , 2006, Journal of neuroscience research.

[127]  S. Nagata,et al.  Involvement of caspase 3-activated DNase in internucleosomal DNA cleavage induced by diverse apoptotic stimuli , 1999, Oncogene.

[128]  Bor Luen Tang,et al.  Leptin as a neuroprotective agent. , 2008, Biochemical and biophysical research communications.

[129]  Pinar Mesci,et al.  Author manuscript, published in "Journal of Neural Transmission 2010;117(8):981-1000" DOI: 10.1007/s00702-010-0429-0 A G Barbeito et al. Motor neuron-immune interactions Motor neuron- immune interactions: the vicious circle of ALS , 2010 .

[130]  T. Iwaki,et al.  Impaired Cytoplasmic–Nuclear Transport of Hypoxia‐Inducible Factor‐1α in Amyotrophic Lateral Sclerosis , 2013, Brain pathology.

[131]  S. Aquilonius,et al.  Cholinergic, opioid and glycine receptor binding sites localized in human spinal cord by in vitro autoradiography Changes in amyotrophic lateral sclerosis , 1985, Acta neurologica Scandinavica.

[132]  Adiponectin is Protective against Oxidative Stress Induced Cytotoxicity in Amyloid-Beta Neurotoxicity , 2012, PloS one.

[133]  J. Turnbull,et al.  Sonic Hedgehog is Cytoprotective against Oxidative Challenge in a Cellular Model of Amyotrophic Lateral Sclerosis , 2011, Journal of Molecular Neuroscience.

[134]  G. Sobue,et al.  Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis , 2005, Annals of neurology.

[135]  E. Stefani,et al.  Cytotoxicity of immunoglobulins from amyotrophic lateral sclerosis patients on a hybrid motoneuron cell line. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[136]  T. Holmøy,et al.  T cells in amyotrophic lateral sclerosis , 2008, European journal of neurology.

[137]  D. Price,et al.  Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[138]  K. Jin,et al.  Vascular Endothelial Growth Factor Overexpression Delays Neurodegeneration and Prolongs Survival in Amyotrophic Lateral Sclerosis Mice , 2007, The Journal of Neuroscience.

[139]  E. Aronica,et al.  Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue , 2011, Neuroscience.

[140]  T. Kanda,et al.  FGF-9 is an autocrine/paracrine neurotrophic substance for spinal motoneurons , 1999, International Journal of Developmental Neuroscience.

[141]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[142]  T. Hortobágyi,et al.  THE NEURONAL CELL CYCLE AS A MECHANISM OF PATHOGENESIS IN ALZHEIMER'S DISEASE , 2008 .

[143]  P. Mccombe,et al.  The Role of Immune and Inflammatory Mechanisms in ALS , 2011, Current molecular medicine.

[144]  E. Aronica,et al.  Expression of brain-derived neurotrophic factor and tyrosine kinase B receptor proteins in glioneuronal tumors from patients with intractable epilepsy: colocalization with N-methyl-D-aspartic acid receptor , 2001, Acta Neuropathologica.

[145]  Hitoshi Takahashi,et al.  An Inducer of VGF Protects Cells against ER Stress-Induced Cell Death and Prolongs Survival in the Mutant SOD1 Animal Models of Familial ALS , 2010, PloS one.

[146]  J. Julien,et al.  Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects? , 2000, Journal of the Neurological Sciences.

[147]  B. Brooks A Summary of the Current Position of TRH in ALS Therapy a , 1989, Annals of the New York Academy of Sciences.

[148]  D. Green,et al.  Caspase-3 Is the Primary Activator of Apoptotic DNA Fragmentation via DNA Fragmentation Factor-45/Inhibitor of Caspase-activated DNase Inactivation* , 1999, The Journal of Biological Chemistry.

[149]  E. Goodall,et al.  Genetics of Familial Amyotrophic Lateral Sclerosis , 2012 .

[150]  A. Chiò,et al.  Involvement of immune response in the pathogenesis of amyotrophic lateral sclerosis: a therapeutic opportunity? , 2010, CNS & neurological disorders drug targets.

[151]  J. Kira,et al.  Increased IL-13-producing T cells in ALS: Positive correlations with disease severity and progression rate , 2007, Journal of Neuroimmunology.

[152]  P. V. van Rijen,et al.  Expression and Cell Distribution of Group I and Group II Metabotropic Glutamate Receptor Subtypes in Taylor‐type Focal Cortical Dysplasia , 2003, Epilepsia.

[153]  Christoph Schmitz,et al.  Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS , 2005, Nature Neuroscience.

[154]  H. Zoghbi,et al.  Neurobiology of disease , 2000, Current Opinion in Neurobiology.

[155]  R. Ophoff,et al.  A CASE OF ALS-FTD IN A LARGE FALS PEDIGREE WITH A K17I ANG MUTATION , 2009, Neurology.

[156]  J. Loeffler,et al.  Alteration of the Bcl-x/Bax Ratio in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis: Evidence for the Implication of the p53 Signaling Pathway , 2000, Neurobiology of Disease.

[157]  A. Pizzuti,et al.  Mitochondrial disfunction as a cause of ALS. , 2011, Archives italiennes de biologie.

[158]  P. V. van Rijen,et al.  Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias , 2010, Epilepsia.

[159]  J. Rothstein,et al.  Current hypotheses for the underlying biology of amyotrophic lateral sclerosis , 2009, Annals of neurology.

[160]  Reduced angiotensin II levels in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis , 2009, Acta neurologica Scandinavica.

[161]  P. Shaw,et al.  Molecular and cellular pathways of neurodegeneration in motor neurone disease , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[162]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[163]  Ewout J. N. Groen,et al.  Meta-analysis of gene expression profiling in amyotrophic lateral sclerosis: A comparison between transgenic mouse models and human patients , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[164]  B. Jeon,et al.  Adiponectin protects hippocampal neurons against kainic acid-induced excitotoxicity , 2009, Brain Research Reviews.

[165]  H. Stępień,et al.  Epidermal growth factor in human cerebrospinal fluid: reduced levels in amyotrophic lateral sclerosis , 1986, Journal of Neurology.

[166]  G. Rosoklija,et al.  Recruitment of the Mitochondrial-Dependent Apoptotic Pathway in Amyotrophic Lateral Sclerosis , 2001, The Journal of Neuroscience.

[167]  M. Cozzolino,et al.  Mitochondrial dysfunction in ALS , 2012, Progress in Neurobiology.

[168]  D. Cibrian,et al.  Therapeutic Effect of the Combined Use of Growth Hormone Releasing Peptide-6 and Epidermal Growth Factor in an Axonopathy Model , 2010, Neurotoxicity Research.

[169]  S. B. Caine,et al.  Alterations in receptors for thyrotropin‐releasing hormone, serotonin, and acetylcholine in amyotrophic lateral sclerosis , 1988, Neurology.

[170]  S. Appel,et al.  Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS , 2012, Experimental Neurology.

[171]  P. Poindron,et al.  Cyclin dependent kinase inhibitors prevent apoptosis of postmitotic mouse motoneurons. , 2006, Life sciences.

[172]  J. Thompson,et al.  Astrocyte activation by fibroblast growth factor‐1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis , 2005, Journal of neurochemistry.

[173]  A Hofman,et al.  Genetic epidemiology of amyotrophic lateral sclerosis , 2003, Clinical genetics.

[174]  L. Martin p53 Is Abnormally Elevated and Active in the CNS of Patients with Amyotrophic Lateral Sclerosis , 2000, Neurobiology of Disease.