On the Relation between Gradient Flows and the Large-Deviation Principle, with Applications to Markov Chains and Diffusion

Motivated by the occurrence in rate functions of time-dependent large-deviation principles, we study a class of non-negative functions ℒ that induce a flow, given by ℒ(ρt,ρ̇t)=0$\mathcal{L} (\rho _{t},\dot \rho _{t})=0$. We derive necessary and sufficient conditions for the unique existence of a generalized gradient structure for the induced flow, as well as explicit formulas for the corresponding driving entropy and dissipation functional. In particular, we show how these conditions can be given a probabilistic interpretation when ℒ is associated to the large deviations of a microscopic particle system. Finally, we illustrate the theory for independent Brownian particles with drift, which leads to the entropy-Wasserstein gradient structure, and for independent Markovian particles on a finite state space, which leads to a previously unknown gradient structure.

[1]  Dynamical Gibbs-non-Gibbs transitions , 2013 .

[2]  Tomás Roubícek,et al.  A Model of Rupturing Lithospheric Faults with Reoccurring Earthquakes , 2013, SIAM J. Appl. Math..

[3]  S. Chow,et al.  Fokker–Planck Equations for a Free Energy Functional or Markov Process on a Graph , 2011, Archive for Rational Mechanics and Analysis.

[4]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[5]  Giorgio C. Buttazzo,et al.  Variational Analysis in Sobolev and BV Spaces - Applications to PDEs and Optimization, Second Edition , 2014, MPS-SIAM series on optimization.

[6]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[7]  R. McCann,et al.  A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.

[8]  Alexander Mielke,et al.  Energetic formulation of multiplicative elasto-plasticity using dissipation distances , 2003 .

[9]  I. Pinelis OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES IN BANACH SPACES , 1994, 1208.2200.

[10]  J. Gärtner,et al.  Large deviations from the mckean-vlasov limit for weakly interacting diffusions , 1987 .

[11]  C. Villani Optimal Transport: Old and New , 2008 .

[12]  S. Luckhaus,et al.  Implicit time discretization for the mean curvature flow equation , 1995 .

[13]  Stefan Adams,et al.  From a Large-Deviations Principle to the Wasserstein Gradient Flow: A New Micro-Macro Passage , 2010, 1004.4076.

[14]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[15]  A large deviation approach to optimal transport , 2007, 0710.1461.

[16]  A. Mielke On evolutionary -convergence for gradient systems , 2014 .

[17]  E. Harrell Communications in Partial Differential Equations , 2007 .

[18]  Giuseppe Savaré,et al.  Passing to the limit in a Wasserstein gradient flow: from diffusion to reaction , 2011, 1102.1202.

[19]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[20]  Manh Hong Duong,et al.  WASSERSTEIN GRADIENT FLOWS FROM LARGE DEVIATIONS OF MANY-PARTICLE LIMITS , 2013 .

[21]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[22]  A. Visintin,et al.  On A Class Of Doubly Nonlinear Evolution Equations , 1990 .

[23]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[24]  A. Mielke Deriving amplitude equations via evolutionary Γ-convergence , 2014 .

[25]  Manh Hong Duong,et al.  GENERIC formalism of a Vlasov–Fokker–Planck equation and connection to large-deviation principles , 2013, 1302.1024.

[26]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[27]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[28]  D. M. Renger Microscopic interpretation of Wasserstein gradient flows , 2013 .

[29]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[30]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[31]  T M Li Ge Te Interacting Particle Systems , 2013 .

[32]  The Fluctuation Theorem as a Gibbs Property , 1998, math-ph/9812015.

[33]  M. Peletier,et al.  Well-posedness of a parabolic moving-boundary problem in the setting of Wasserstein gradient flows , 2008, 0812.1269.

[34]  M. H. Duong,et al.  Conservative‐dissipative approximation schemes for a generalized Kramers equation , 2012, 1206.2859.

[35]  Riccarda Rossi,et al.  A metric approach to a class of doubly nonlinear evolution equations and applications , 2008 .

[36]  Matthias Liero,et al.  Gradient structures and geodesic convexity for reaction–diffusion systems , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  T. Kurtz,et al.  Large Deviations for Stochastic Processes , 2006 .

[38]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[39]  A. Mielke Deriving amplitude equations via evolutionary $\Gamma$-convergence , 2014 .

[40]  N. Dirr,et al.  Upscaling from particle models to entropic gradient flows , 2012 .

[41]  S. Varadhan,et al.  Large deviations , 2019, Graduate Studies in Mathematics.

[42]  Alexander Mielke,et al.  A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .

[43]  Stefan Adams,et al.  Large deviations and gradient flows , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Alexander Mielke,et al.  Formulation of thermoelastic dissipative material behavior using GENERIC , 2011 .

[45]  S. Feng Large Deviations for Empirical Process of Mean-Field Interacting Particle System with Unbounded Jumps , 1994 .

[46]  M. Peletier,et al.  VARIATIONAL FORMULATION OF THE FOKKER–PLANCK EQUATION WITH DECAY: A PARTICLE APPROACH , 2011, 1108.3181.

[47]  A. Mielke Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .

[48]  Ina Ruck,et al.  USA , 1969, The Lancet.

[49]  C. Maes,et al.  On the definition of entropy production, via examples , 2000 .