Performance of a bistable flow-energy harvester based on vortex-induced vibration

[1]  L. Zuo,et al.  Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting , 2020 .

[2]  R. Salazar,et al.  Fatigue in piezoelectric ceramic vibrational energy harvesting: A review , 2020 .

[3]  E. Yeatman,et al.  Piezoelectric wind velocity sensor based on the variation of galloping frequency with drag force , 2020 .

[4]  Yaowen Yang,et al.  An asymmetric bending-torsional piezoelectric energy harvester at low wind speed , 2020 .

[5]  Daniil Yurchenko,et al.  A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting , 2019, Applied Physics Letters.

[6]  Xiaodong Wang,et al.  Comparisons of bioinspired piezoelectric wind energy harvesters with different layout of stiffeners based on leaf venation prototypes , 2019, Sensors and Actuators A: Physical.

[7]  Gang Hu,et al.  Performance evaluation of twin piezoelectric wind energy harvesters under mutual interference , 2019, Applied Physics Letters.

[8]  Kai Xue,et al.  A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins , 2018, Sensors and Actuators A: Physical.

[9]  Mergen H. Ghayesh,et al.  Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement , 2018, International Journal of Engineering Science.

[10]  Hongjun Zhu,et al.  CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller , 2018 .

[11]  K. Kwok,et al.  Performance of a circular cylinder piezoelectric wind energy harvester fitted with a splitter plate , 2017 .

[12]  Luca Caracoglia,et al.  Modeling the coupled electro-mechanical response of a torsional-flutter-based wind harvester with a focus on energy efficiency examination , 2017 .

[13]  K. Kwok,et al.  Aerodynamic Modification to a Circular Cylinder to Enhance the Piezoelectric Wind Energy Harvesting , 2016 .

[14]  K. Kwok,et al.  Enhanced performance of wind energy harvester by aerodynamic treatment of a square prism , 2016 .

[15]  Muhammad R. Hajj,et al.  Experimental investigation and performance modeling of centimeter-scale micro-wind turbine energy harvesters , 2015 .

[16]  Faizal Mustapha,et al.  A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective , 2014 .

[17]  Muhammad R. Hajj,et al.  Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder , 2013 .

[18]  Oriol Lehmkuhl,et al.  Low-frequency unsteadiness in the vortex formation region of a circular cylinder , 2013 .

[19]  Marco Ferrari,et al.  Piezoelectric buckled beams for random vibration energy harvesting , 2012 .

[20]  Alain Dervieux,et al.  Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects , 2011 .

[21]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[22]  Tetuya Kawamura,et al.  Computation of high Reynolds number flow around a circular cylinder with surface roughness , 1984 .

[23]  Zhike Peng,et al.  Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates , 2020 .

[24]  Li Zhang,et al.  Performance improvement of aeroelastic energy harvesters with two symmetrical fin-shaped rods , 2020 .

[25]  Thomas Andrianne,et al.  Energy harvesting from different aeroelastic instabilities of a square cylinder , 2018 .