Analytical pricing of single barrier options under local volatility models

This paper considers a single barrier option under a local volatility model and shows that any down-and-in option can be priced by a combination of three standard European options whose volatility functions are connected through symmetrization. The symmetrized volatility function is approximated by a sequence of smooth functions that converges to the original one. An approximation formula is developed to price the standard European options with the approximated volatility functions. Finally, we apply the Aitken convergence accelerator to obtain an approximate price of the down-and-in option. Other single barrier options are priced in a similar fashion.

[1]  A Gu,et al.  Breaking down barriers , 2018, Nature Astronomy.

[2]  M. Kijima,et al.  A Chaos Expansion Approach for the Pricing of Contingent Claims , 2015 .

[3]  Yuri Imamura,et al.  A numerical scheme based on semi-static hedging strategy , 2014, Monte Carlo Methods Appl..

[4]  Jirô Akahori,et al.  On a symmetrization of diffusion processes , 2012, 1206.5983.

[5]  Y. Imamura,et al.  Some Simulation Results of the Put-Call Symmetry Method Applied to Stochastic Volatility Models , 2012 .

[6]  M. Schmutz,et al.  Self-dual continuous processes , 2012, 1201.6516.

[7]  Roger Lee,et al.  PUT‐CALL SYMMETRY: EXTENSIONS AND APPLICATIONS , 2009 .

[8]  Ernst Eberlein,et al.  On the duality principle in option pricing: semimartingale setting , 2008, Finance Stochastics.

[9]  Peter Carr,et al.  On the Numerical Evaluation of Option Prices in Jump Diffusion Processes , 2007 .

[10]  M. C. Recchioni,et al.  Analysis of quadrature methods for pricing discrete barrier options , 2007 .

[11]  Rolf Poulsen,et al.  Static Hedging of Barrier Options under General Asset Dynamics , 2006 .

[12]  Jason Fink An examination of the effectiveness of static hedging in the presence of stochastic volatility , 2003 .

[13]  E. Gobet,et al.  Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options , 2003 .

[14]  S. Kou ON PRICING OF DISCRETE BARRIER OPTIONS , 2003 .

[15]  M. Kijima MONOTONICITY AND CONVEXITY OF OPTION PRICES REVISITED , 2002 .

[16]  J. Emanuel,et al.  Breaking down the barriers , 2002, Nature.

[17]  Vadim Linetsky,et al.  Pricing and Hedging Path-Dependent Options Under the CEV Process , 2001, Manag. Sci..

[18]  K. Stewart,et al.  Breaking Barriers , 2010 .

[19]  P. Forsyth,et al.  PDE methods for pricing barrier options , 2000 .

[20]  E. Gobet Weak approximation of killed diffusion using Euler schemes , 2000 .

[21]  Masaaki Kijima Monotonicities in a Markov Chain Model for Valuing Corporate Bonds Subject to Credit Risk , 1998 .

[22]  Phelim P. Boyle,et al.  An explicit finite difference approach to the pricing of barrier options , 1998 .

[23]  Eric Briys,et al.  Valuing Risky Fixed Rate Debt: An Extension , 1997, Journal of Financial and Quantitative Analysis.

[24]  P. Carr,et al.  Static Hedging of Exotic Options , 1998 .

[25]  J. Hull Options, futures, and other derivative securities , 1989 .

[26]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[27]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[28]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.