Digital Microrobotics Using MEMS Technology

Microrobotics deals with the design, fabrication, and control of microrobots to perform tasks in the microworld (i.e., the world of submillimetric objects). While end-effectors experienced considerable developments, few works concerned the development of microrobot architectures adapted to the microworld. Most of the current robots are bulky and are based on the miniaturization of traditional architectures and kinematics. In this chapter, we introduce a new approach for the design of microrobot architectures based on elementary mechanical bistable modules. This bottom-up approach called “digital microrobotics” takes advantage of MEMS technology and open-loop (sensorless) digital control to offer a flexible way to experiment various kinematics adapted to the microworld. A microfabricated bistable module is proposed and a complete digital microrobot is designed, modeled and fabricated. Digital microrobotics opens new perspectives in microrobots design and micromanipulation tasks.

[1]  Philippe Lutz,et al.  Microfabricated bistable module for digital microrobotics , 2011 .

[2]  Kristofer S. J. Pister,et al.  Mechanical Digital-To-Analog Converters , 2002 .

[3]  J. Lang,et al.  A bulk-micromachined bistable relay with U-shaped thermal actuators , 2005, Journal of Microelectromechanical Systems.

[4]  J. Lang,et al.  A curved-beam bistable mechanism , 2004, Journal of Microelectromechanical Systems.

[5]  Gregory S. Chirikjian,et al.  A combinatorial approach to trajectory planning for binary manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[6]  Gregory S. Chirikjian,et al.  A binary paradigm for robotic manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[7]  Il-Han Hwang,et al.  Modeling and experimental characterization of the chevron-type bi-stable microactuator , 2003 .

[8]  Harold G. Craighead,et al.  The pull-in behavior of electrostatically actuated bistable microstructures , 2008 .

[9]  Troy Gomm Development of In-Plane Compliant Bistable Microrelays , 2003 .

[10]  Gregory S. Chirikjian,et al.  An efficient method for computing the forward kinematics of binary manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  H. H. Robertshaw,et al.  Variable geometry trusses , 1989 .

[12]  Steven Dubowsky,et al.  Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator , 2004 .

[13]  Cheng-Kuo Sung,et al.  Design and experiments of fully compliant bistable micromechanisms , 2005 .

[14]  Cédric Clévy Contribution à la micromanipulation robotisée : un système de changement d'outils automatique pour le micro-assemblage , 2005 .

[15]  Gregory S. Chirikjian,et al.  Inverse kinematics of binary manipulators with applications to service robotics , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[16]  Ho Nam Kwon,et al.  A pulse-operating electrostatic microactuator for bi-stable latching , 2005 .

[17]  Hiroshi Furuya,et al.  Variable geometry truss and its application to deployable truss and space crane arm , 1985 .

[18]  Gregory S. Chirikjian,et al.  Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[19]  Ulrich Mescheder,et al.  Simulation and realization of a novel micromechanical bi-stable switch , 2004 .

[20]  P. C. Hughes,et al.  Trussarm—A Variable-Geometry-Truss Manipulator , 1991 .